Journal of Geodesy and Geoinformation Science ›› 2022, Vol. 5 ›› Issue (1): 39-49.doi: 10.11947/j.JGGS.2022.0105
• Special Issue • Previous Articles Next Articles
Received:
2021-07-19
Accepted:
2022-01-02
Online:
2022-03-20
Published:
2022-03-31
About author:
Zhenhong LI (1975—), male, PhD, professor, main reasearch interests include imaging geodesy, geohazards, infrastructure stability and precision agriculture. E-mail: Supported by:
Zhenhong LI. Locating the Small 1999 Frenchman Flat, Nevada Earthquake with InSAR Stacking[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 39-49.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig.1
Topographic map of the region surrounding the 1999 Frenchman Flat earthquake (White lines show previously mapped faults; Red dashed rectangles show the 24km area around Frenchman Flat shown in subsequent figures, red circles indicate the centroid locations from ISC, NEIC/BRK and UNR; And black solid lines delimit the extents of the InSAR data used for this study)"
Fig.3
Eight descending interferograms and their stacked image superimposed on a SRTM DEM ((a)-(h) wrapped interferogram with the dates shown on the top left part (Format: YYMMDD-YYMMDD); all the interferograms are wrapped so that each colour cycle from violet to red to violet represents an increase of 1.6cm in the range to satellite; And solid black lines indicate profiles shown in Fig.4(b))"
Tab.1
ERS SAR data used in the InSAR analysis"
Track | Frame | Date 1 | Orbit 1 | Date 2 | Orbit 2 | B1/ma | ha/mb | σ/cmc | |
---|---|---|---|---|---|---|---|---|---|
Descending | 399 | 2871 | 05-Nov-1993 | 12067(ERS-1) | 13-Dec-1999 | 24301(ERS-2) | 190 | 47 | 0.42 |
05-Nov-1993 | 12067(ERS-1) | 18-Sep-2000 | 28309(ERS-2) | -56 | 160 | 0.12 | |||
04-Dec-1995 | 3259(ERS-2) | 01-Feb-1999 | 19792(ERS-2) | 26 | 346 | 0.06 | |||
08-Jan-1996 | 3760(ERS-2) | 27-Nov-2000 | 29311(ERS-2) | -47 | 191 | 0.10 | |||
03-Mar-1997 | 9772(ERS-2) | 27-Nov-2000 | 29311(ERS-2) | -125 | 72 | 0.27 | |||
03-Mar-1997 | 9772(ERS-2) | 01-Feb-1999 | 19792(ERS-2) | 198 | 46 | 0.44 | |||
16-Feb-1998 | 14782(ERS-2) | 01-Feb-1999 | 19792(ERS-2) | 38 | 237 | 0.08 | |||
23-Mar-1998 | 15283(ERS-2) | 27-Nov-2000 | 29311(ERS-2) | 67 | 134 | 0.15 | |||
Ascending | 306 | 729 | 19-Aug-1997 | 12184(ERS-2) | 07-Dec-1999 | 24208(ERS-2) | -399 | 23 | 0.88 |
Tab.2
Source parameters and their 1σ confidence limits from various source models"
Modela | Data | Strike /(°) | Dip /(°) | Rake /(°) | Eastingb /km | Northingb /km | Depth /km | Magnitudec | slip /m | Length /km | Width /km | RMS misfit /mm | Validation /mm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ISCd | Seismic | — | — | — | 591.8 | 4077.6 | 0.5 | 4.1 | — | — | — | — | — |
NEIC/ BRK | Seismic | 194 | 61 | -105 | 590.2 | 4074.9 | 8 | 4.8 | — | — | — | — | — |
43 | 32 | -65 | |||||||||||
Ichinose | Seismic | 196 | 64 | -103 | 592.8 | 4072.1 | 8 | 4.61 | — | — | — | — | — |
45 | 29 | -65 | |||||||||||
UNR | Portable | 223 | 51 | -82 | 591.0 | 4070.2 | 6.86 | 4.7 | — | — | — | — | — |
30 | 40 | -100 | |||||||||||
NWDMe | InSAR | 223* | 51* | -82* | 592.5±0.2 | 4074.4±0.3 | 3.4±0.2 | 4.8±0.04 | 0.10±0.05 | 4.9±1.1 | 2.1±0.7 | 1.2 | 3.5 |
SEDMe | InSAR | 30* | 40* | -100* | 592.7±0.2 | 4074.3±0.3 | 3.3±0.2 | 4.8±0.03 | 0.08±0.04 | 5.1±1.2 | 2.0±0.5 | 1.1 | 3.5 |
Fig.6
The stacked, model and residual interferograms superimposed on SRTM DEM (The stacked interferogram and models are wrapped so that each colour cycle from violet to red to violet represents an increase of 1.6cm in the range to satellite; Black lines show previously mapped faults and red circles indicate the centroid locations from ISC, NEIC/BRK and UNR; Black rectangles show the map view projections of the NW-dipping/SE-dipping fault planes; And dashed red lines indicate the fault rupture projected on the surface, which would be expected in the black rectangles if the fault broke the surface)"
Fig.7
Uncertainties and trade-offs in model parameters for the NWDM model (Model parameter trade-offs for uniform-slip model. Each of the 100 dots in each of the upper plots is the best-fit solution for one data set to which Monte Carlo, correlated noise has been added, [Xcoord, Ycoord] represents the coordinate of the centre of the uniform slip plane projected vertically to the surface (UTM Zone 11: [Easting, Northing]), and CdDepth indicates the depth of the center; And histograms summarize the results for each parameter)"
Fig.8
Uncertainties and trade-offs in model parameters for the SEDM model (Model parameter trade-offs for the uniform-slip model. Each of the 100 dots in each of the upper plots is the best-fit solution for one data set to which Monte Carlo, correlated noise has been added, [Xcoord, Ycoord] represents the coordinate of the centre of the uniform slip plane projected vertically to the surface (UTM Zone 11: [Easting, Northing]), and CdDepth indicates the depth of the center; And histograms summarize the results for each parameter)"
Fig.10
Validation using an independent ascending interferogram (The ascending interferogram and models are wrapped so that each colour cycle from violet to red to violet represents an increase of 1.6cm in the range to satellite. And black lines show previously mapped faults and red circles indicate the centroid locations from ISC, NEIC and UNR; Black rectangles show the map view projections of the SE-dipping fault planes; And dashed red lines indicate the fault rupture projected on the surface, which would be expected in the black rectangles if the fault broke the surface)"
[1] |
LOHMAN R B, SIMONS M, SAVAGE B. Location and mechanism of the little skull mountain earthquake as constrained by satellite radar interferometry and seismic waveform modeling[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B6): 2118.DOI: 10.1029/2001JB000627.
doi: 10.1029/2001JB000627 |
[2] |
ICHINOSE G A, ANDERSON J G, SMITH K D, et al. Source parameters of eastern california and western nevada earthquakes from regional moment tensor inversion[J]. Bulletin of the Seismological Society of America, 2003, 93(1): 61-84.
doi: 10.1785/0120020063 |
[3] |
MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the earth’s surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500.
doi: 10.1029/97RG03139 |
[4] |
ELLIOTT J R, WALTERS R J, WRIGHTT J. The role of space-based observation in understanding and responding to active tectonics and earthquakes[J]. Nature Communications, 2016, 7: 13844. DOI: 10.1038/ncomms13844.
doi: 10.1038/ncomms13844 |
[5] | YU Chen, LI Zhenhong, SONG Chuang. Geodetic constraints on recent subduction earthquakes and future seismic hazards in the southwestern coast of Mexico[J]. Geophysical Research Letters, 2021, 48(13): e2021GL094192. |
[6] | BELL J W, AMELUNG F, HENRY C D. InSAR analysis of the 2008 reno-mogul earthquake swarm: evidence for westward migration of walker lane style dextral faulting[J]. Geophysical Research Letters, 2012, 39(18): L18306. |
[7] |
BARNHART WD, YECK W L, MCNAMARA D E. Induced earthquake and liquefaction hazards in Oklahoma, USA: constraints from InSAR[J]. Remote Sensing of Environment, 2018, 218: 1-12.
doi: 10.1016/j.rse.2018.09.005 |
[8] | FUNNING G J, GARCIA A. A systematic study of earthquake detectability using sentinel-1 interferometric wide-swath data[J]. Geophysical Journal International, 2019, 216(1): 332-349. |
[9] | KATZENSTEIN K W, BELLJ W. InSAR reveals a potpourri of deformation signals in the yucca mountain—amargosa valley—death valley region, southwestern nevada/southeastern California[C]// Proceedings of the American Geophysical Union, Fall Meeting 2005. San Francisco: AGU, 2005. |
[10] | ROSEN P A, HENSLEY S, PELTZERG, et al. Updated repeat orbit interferometry package released[J]. Eos, Transactions American Geophysical Union, 2004, 85(5): 47. |
[11] | SCHARROO R, VISSER P. Precise orbit determination and gravity field improvement for the ers satellites[J]. Journal of Geophysical Research: Oceans, 1998, 103(C4): 8113-8127. |
[12] |
FARR T G, ROSENP A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2):RG2004. DOI: 10.1029/2005RG000183.
doi: 10.1029/2005RG000183 |
[13] |
YU Chen, LI Zhenhong, PENNA N T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model[J]. Remote Sensing of Environment, 2018, 204: 109-121.
doi: 10.1016/j.rse.2017.10.038 |
[14] | ZEBKER H A, ROSEN P A, HENSLEYS. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B4): 7547-7563. |
[15] |
YU Chen, LI Zhenhong, CHEN Jiajun, et al. Small magnitude Co-seismic deformation of the 2017 Mw 6.4 Nyingchi earthquake revealed by InSAR measurements with atmospheric correction[J]. Remote Sensing, 2018, 10(5): 684.
doi: 10.3390/rs10050684 |
[16] |
MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the earth’s surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500.
doi: 10.1029/97RG03139 |
[17] |
HOOPER A, BEKAERT D, SPAANS K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012, 514-517: 1-13.
doi: 10.1016/j.tecto.2011.10.013 |
[18] |
SELVAKUMARAN S, PLANK S, GEIß C, et al. Remote monitoring to predict bridge scour failure using interferometric synthetic aperture radar (InSAR) stacking techniques[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 463-470.
doi: 10.1016/j.jag.2018.07.004 |
[19] |
LI Zhiwei, XU Weibin, FENG Guangcai, et al. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model[J]. Geophysical Journal International, 2012, 189(2): 898-910.
doi: 10.1111/gji.2012.189.issue-2 |
[20] |
ZEBKER H. Accuracy of a model-free algorithm for temporal InSAR tropospheric correction[J]. Remote Sensing, 2021, 13(3): 409.
doi: 10.3390/rs13030409 |
[21] |
JÓNSSON S, ZEBKER H, SEGALL P, et al. Fault slip distribution of the 1999 Mw 7.1 hector mine, California, earthquake, estimated from satellite radar and GPS measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.
doi: 10.1785/0120000922 |
[22] |
OKADA Y. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154.
doi: 10.1785/BSSA0750041135 |
[23] |
LOHMAN R B, SIMONSM. Locations of selected small earthquakes in the zagros mountains[J]. Geochemistry, Geophysics,Geosystems, 2005, 6(3): Q03001. DOI: 10.1029/2004GC000849.
doi: 10.1029/2004GC000849 |
[24] |
WRIGHT T J, PARSONS B E, JACKSON J A, et al. Source parameters of the 1 October 1995 dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling[J]. Earth and Planetary Science Letters, 1999, 172(1-2): 23-37.
doi: 10.1016/S0012-821X(99)00186-7 |
[25] |
FUNNING G J, PARSONS B, WRIGHT T J, et al. Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B9): B09406. DOI: 10.1029/2004JB003338.
doi: 10.1029/2004JB003338 |
[26] |
PARSONS B, WRIGHT T, ROWE P, et al. The 1994 Sefidabeh (eastern Iran) earthquakes revisited: new evidence from satellite radar interferometry and carbonate dating about the growth of an active fold above a blind thrust fault[J]. Geophysical Journal International, 2006, 164(1): 202-217. DOI: 210.1111/j.1365-1246X.2005.02655.x.
doi: 210.1111/j.1365-1246X.2005.02655.x |
[27] |
WRIGHT T J, LU Zhong, WICKS C. Source model for the Mw 6.7, 23 October 2002, Nenana mountain earthquake (Alaska) from InSAR[J]. Geophysical Research Letters, 2003, 30(18): 1974. DOI: 10.1029/2003GL018014.
doi: 10.1029/2003GL018014 |
[28] |
FENG Wanpeng, LI Zhenhong, HOEYT, et al. Patterns and mechanisms of coseismic and postseismic slips of the 2011 Mw 7.1 Van (Turkey) earthquake revealed by multi-platform synthetic aperture radar interferometry[J]. Tectonophysics, 2014, 632: 188-198. DOI: 10.1016/j.tecto.2014.06.011.
doi: 10.1016/j.tecto.2014.06.011 |
[29] |
YU Chen, LI Zhenhong, PENNA N T, et al. Generic atmospheric correction model for interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 9202-9222.
doi: 10.1029/2017JB015305 |
[30] |
ZHANG Chenglong, LI Zhenhong, YU Chen, et al. Landslide detection of the Jinsha River region using GACOS assisted insar stacking[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1649-1657. DOI: 10.13203/j.whugis20200675.
doi: 10.13203/j.whugis20200675 |
[1] | Zhenhong LI,Chen YU,Ruya XIAO,Wu ZHU. Entering a New Era of InSAR: Advanced Techniques and Emerging Applications [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 1-4. |
[2] | Wu ZHU,Yang LEI,Quan SUN. Detection, Estimation and Compensation of Ionospheric Effect on SAR Interferogram Using Azimuth Shift [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 14-24. |
[3] | Bing XU,Liqun LIU,Zhiwei LI,Yan ZHU,Jingxin HOU,Wenxiang MAO. Design Bistatic Interferometric DEM Generation Algorithm and Its Theoretical Accuracy Analysis for LuTan-1 Satellites [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 25-38. |
[4] | Chuang SONG,Chen YU,Gauhar MELDEBEKOVA,Zhenhong LI. Normal Fault Slips of the March 2021 Greece Earthquake Sequence from InSAR Observations [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 50-59. |
[5] | Lyu ZHOU,Yizhan ZHAO,Zilin ZHU,Chao REN,Fei YANG,Ling HUANG,Xin LI. Spatial and Temporal Evolution of Surface Subsidence in Tianjin from 2015 to 2020 Based on SBAS-InSAR Technology [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 60-72. |
[6] | Chen YU,Zhenhong LI,Lin BAI,Jan-Peter MULLER,Jingfa ZHANG,Qiming ZENG. Successful Applications of Generic Atmospheric Correction Online Service for InSAR (GACOS) to the Reduction of Atmospheric Effects on InSAR Observations [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 109-115. |
[7] | Qing ZHAO,Antonio PEPE,Adam DEVLIN,Shuangshang ZHANG,Francesco FALABELLA,Giovanni ZENI,Qiang WANG,Jingzhao DING,Danan DONG,Min LIU,Qing XU,Xia LEI,Jiayi PAN. Impact of Sea-Level-Rise and Human Activities in Coastal Regions: An Overview [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 124-143. |
[8] | Keren DAI,Peilian RAN,Zhenhong LI,Julian AUSTIN,Jan-Peter MULLER,Qiming ZENG,Jingfa ZHANG,Leyin HU. Land Subsidence in Xiong’an New Area, China Revealed by InSAR Observations [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 70-76. |
[9] | Guang LIU,Perski ZBIGNIEW,Salvi STEFANO,Thiebes BENNI,Lixin WU,Jinghui FAN,Shibiao BAI,Lianhuan WEI,Shiyong YAN,Rui SONG,Bignami CHRISTIAN,Tolomei CRISTIANO,Stefan SCHNEIDERBAUER,João Sousa JOAQUIM. Land Surface Displacement Geohazards Monitoring Using Multi-temporal InSAR Techniques [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 77-87. |
[10] | Yaxin BI,Vyron CHRISTODOULOU,George WILKIE,Guoze ZHAO,Peter NICHOLL,Mingjun HUANG,Bin HAN,Ji TANG. Automatic Anomaly Detection for Swarm Observations [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 94-108. |
[11] | Gang LI,Hui LIN,Qinghua YE,Liming JIANG,Andrew HOOPER,Yinyi LIN. Acceleration of Glacier Mass Loss after 2013 at the Mt. Everest (Qomolangma) [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 60-69. |
[12] | Leyang WANG,Xiong ZHAO. Determination of Smoothing Factor for the Inversion of Co-seismic Slip Distribution [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 25-35. |
[13] | Xinming TANG,Tao LI,Xiaoming GAO,Qianfu CHEN,Xiang ZHANG. Research on Key Technologies of Precise InSAR Surveying and Mapping Applications Using Automatic SAR Imaging [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 27-37. |
[14] | Jianjun ZHU,Qinghua XIE,Tingying ZUO,Changcheng WANG,Jian XIE. Complex Least Squares Adjustment to Improve Tree Height Inversion Problem in PolInSAR [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||