Journal of Geodesy and Geoinformation Science ›› 2019, Vol. 2 ›› Issue (3): 68-78.doi: 10.11947/j.JGGS.2019.0307
Previous Articles Next Articles
Tian ZENG1,3,Lifen SUI1(),Xiaolin JIA2,3,Guofeng JI4,Qinghua ZHANG5
Received:
2018-12-20
Accepted:
2019-06-10
Online:
2019-09-20
Published:
2020-01-21
Contact:
Lifen SUI
E-mail:suilifen@163.com
About author:
Tian ZENG(1992—), postgraduate, majors in satellite positioning technology and application. E-mail: tattian@126.com
Supported by:
Tian ZENG,Lifen SUI,Xiaolin JIA,Guofeng JI,Qinghua ZHANG. Results and Analyses of BDS Precise Orbit Determination with the Enhancement of Fengyun-3C[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(3): 68-78.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Data statistical results%"
GPS | BDS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Visible satellite number | Number | 0 | 1 | 2 | 3 | >3 | 0 | 1 | 2 | 3 | >3 |
GNOS | 0.2 | 0.0 | 0.0 | 0.0 | 99.7 | 11.7 | 12.4 | 12.2 | 14.1 | 49.6 | |
HY2A | 0.0 | 0.0 | 0.1 | 0.5 | 99.4 | — | — | — | — | — | |
Valid satellite number | GNOS | 0.7 | 1.7 | 4.9 | 12.7 | 80.0 | 27.1 | 25.1 | 21.6 | 14.7 | 11.5 |
HY2A | 0.6 | 0.0 | 0.1 | 0.4 | 99.0 | — | — | — | — | — | |
Loss rate of observation code | Code | C1 | P1 | L1 | P2 | L2 | P(B1) | L(B1) | P(B2) | L(B2) | |
GNOS | 99.5 | — | 90.0 | 87.9 | 64.7 | 90.7 | 66.1 | 88.3 | 66.4 | — | |
HY2A | 100 | 96.6 | 99.8 | 94.2 | 94.0 | — | — | — | — | — |
Tab.2
Pseudorange observation quality precision statisticsm"
GEO | IGSO | MEO | All>10° | All>40° | ||
---|---|---|---|---|---|---|
CUT0 | B1 | 0.27 | 0.49 | 0.52 | 0.39 | 0.28 |
B2 | 0.22 | 0.35 | 0.37 | 0.29 | 0.22 | |
GMSD | B1 | 0.19 | 0.25 | 0.29 | 0.23 | 0.19 |
B2 | 0.17 | 0.23 | 0.26 | 0.21 | 0.17 | |
REUN | B1 | 0.24 | 0.36 | 0.30 | 0.30 | 0.20 |
B2 | 0.20 | 0.37 | 0.41 | 0.32 | 0.22 | |
GNOS | B1 | 0.38 | 0.41 | 0.36 | 0.38 | 0.23 |
B2 | 0.29 | 0.32 | 0.24 | 0.29 | 0.20 |
Tab.3
The observation models and force models of combined orbit determination"
Observation models | Information | |
---|---|---|
Observation data | Un-differenced dual-frequency pseudorange and carrier phase data (sampling rate 30s for ground and 10s for LEO) | |
Phase center | GPS and ground: IGS ATX model; BDS: ESA; LEO: nominal PCO | |
Elevation cutoff angle | Ground 7°, LEO 0° | |
Tropospheric delay | Ground: SAAS model, 2-h ZTD and 1-day gradients; LEO: not needed | |
Ambiguity parameter | Partial fixed for ground and float for LEO | |
Satellite clock error | White noise (selecting a ground station as reference clock) | |
POD sampling rate | 300s | |
Station coordinate | PPP network-solution, coordinate precision in millimeter level | |
Gravitational force models | ||
Earth gravity | EIGEN_GL04 up to 10×10 for GPS and 120×120 for LEO | |
N-body gravitation Tide displacement Relativity effect | JPL DE405 IERS conventions 2003 IERS conventions 2003 | |
Non-gravitational force models | ||
Atmospheric drag Solar radiation pressure Empirical acceleration Earth radiation pressure | GPS: Not considered; LEO: DTM94, piecewise drag coefficients GPS: ECOM 5 parameters; LEO: Box-Wing GPS: No; LEO: Piecewise periodical terms in A, C and R directions Not considered |
Tab.4
The overlapping precision of orbit and clock"
Test | orbit overlapping comparison/cm | clock overlapping comparison in visible arc/ns | ||||
---|---|---|---|---|---|---|
Test | A | C | R | 1D | STD (G I M) | RMS (G I M) |
Test 1 | 196.9 | 39.3 | 10.3 | 118.7 | 0.40 (0.40 0.24 0.47) | 0.59 (0.72 0.29 0.62) |
Test 2 | 92.4 | 38.6 | 10.4 | 59.0 | 0.38 (0.40 0.22 0.45) | 0.56 (0.68 0.27 0.58) |
Test 3 | 135.7 | 5.0 | 3.5 | 79.0 | 0.19 (0.10 0.09 0.33) | 0.44 (0.66 0.11 0.38) |
Test 4 | 22.3 | 3.0 | 3.3 | 13.6 | 0.16 (0.12 0.07 0.25) | 0.21 (0.19 0.10 0.28) |
Tab.6
The overlapping precision of orbit and clock"
Test | orbit overlapping comparison/cm | clock overlapping comparison in visible arc/ns | ||||
---|---|---|---|---|---|---|
Test | A | C | R | 1D | STD (G I M) | RMS (G I M) |
Test 1 | 96.6 | 18.4 | 4.2 | 59.5 | 0.86 (1.12 0.96 0.63) | 1.78 (3.12 1.32 1.21) |
Test 2 | 28.7 | 10.5 | 4.7 | 18.6 | 0.78 (1.00 0.82 0.60) | 1.27 (1.47 1.09 1.26) |
Test 3 | 59.9 | 9.2 | 4.5 | 36.1 | 0.60 (0.71 0.54 0.57) | 1.35 (2.19 0.87 1.10) |
Test 4 | 13.4 | 7.0 | 3.1 | 9.2 | 0.58 (0.83 0.54 0.45) | 0.73 (0.90 0.59 0.72) |
[1] | GUO Rui, HU Xiaogong, LIU Li , et al. Orbit Determination for Geostationary Satellites with the Combination of Transfer Ranging and Pseudorange Data[J]. Science China Physics, Mechanics and Astronomy, 2010,53(9):1746-1754. DOI: 10.1007/s11433-010-4092-0 |
[2] | ZHOU Shanshi, HU Xiaogong, WU Bin , et al. Orbit Determination and Time Synchronization for a GEO/IGSO Satellite Navigation Constellation with Regional Tracking Network[J]. Science China Physics, Mechanics and Astronomy, 2011,54(6):1089-1097. DOI: 10.1007/s11433-011-4342-9 |
[3] | MONTENBRUCK O, HAUSCHILD A, STEIGENBERGER P , et al. Initial Assessment of the COMPASS/Beidou-2 Regional Navigation Satellite System[J]. GPS Solutions, 2013,17(2):211-222.DOI: 10.1007/s10291-012-0272-x |
[4] | ZHAO Qile, GUO Jing, LI Min , et al. Initial Results of Precise Orbit and Clock Determination for COMPASS Navigation Satellite System[J]. Journal of Geodesy, 2013,87(5):475-486.DOI: 10.1007/s00190-013-0622-7 |
[5] | STEIGENBERGER P, HUGENTOBLER U, HAUSCHILD A , et al. Orbit and Clock Analysis of Compass GEO and IGSO Satellites[J]. Journal of Geodesy, 2013,87(6):515-525.DOI: 10.1007/s00190-013-0625-4 |
[6] | LOU Yidong, LIU Yang, SHI Chuang , et al. Precise Orbit Determination of Beidou Constellation Based on BETS and MGEX Network[J]. Scientific Reports, 2014(4):4692. |
[7] | LIU Weiping, HAO Jinming, LI Jianwen , et al. Multi-GNSS Joint Precise Orbit Determination of BeiDou Navigation Satellites System[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(11):1132-1138. DOI: 10.13485/j.cnki.11-2089.2014.0186 |
[8] | GUO Rui, ZHOU Jianhua, HU Xiaogong , et al. Precise Orbit Determination and Rapid Orbit Recovery Supported by Time Synchronization[J]. Advances in Space Research, 2015,55(12):2889-2898. DOI: 10.1016/j.asr.2015.03.001 |
[9] | GUO Jing, CHEN Guo, ZHAO Qile , et al. Comparison of Solar Radiation Pressure Models for BDS IGSO and MEO Satellites with Emphasis on Improving Orbit Quality[J]. GPS Solutions, 2017,21(2):511-522. DOI: 10.1007/s10291-016-0540-2 |
[10] | LOU Yidong, LIU Yang, SHI Chuang , et al. Precise Orbit Determination of Beidou Constellation: Method Comparison[J]. GPS Solutions, 2016,20(2):259-268. DOI: 10.1007/s10291-014-0436-y |
[11] | RIM H J, SCHUTZ B E, ABUSALI P A M , et al. Effect of GPS Orbit Accuracy on GPS-determined TOPEX/Poseidon Orbit [C]//Proceedings of ION GPS-95. California: Palm Springs, 1995: 613-617. |
[12] | ZHU Shengyuan, NEUMAYER K H, MASSMANN F H , et al. Impact of Different Data Combinations on the CHAMP Orbit Determination[M] //REIGBER C, LVHR H, SCHWINTZER P. First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies. Berlin, Heidelberg: Springer, 2003: 92-97. |
[13] | HUGENTOBLER U, JÄGGI A, SCHAER S , et al. Combined Processing of GPS Data from Ground Station and LEO Receivers in a Global Solution [C]//Proceedings of the International Association of Geodesy Symposia. Berlin, Heidelberg: Springer, 2003: 169-174. |
[14] | KÖNIG R, REIGBER C, ZHU S Y . Dynamic Model Orbits and Earth System Parameters from Combined GPS and LEO Data[J]. Advances in Space Research, 2005,36(3):431-437.DOI: 10.1016/j.asr.2005.03.064 |
[15] | KUANG Cuilin . Research on Precise Orbit Determination Theory and Methods of Lower Earth Orbit Satellites Using Zero-difference GPS Data[D]. Wuhan: Wuhan University, 2008: 30-33. |
[16] | LIU Weiping . Research on Precise Orbit Determination of BeiDou Navigation Satellite System[D]. Zhengzhou: The PLA Information Engineering University, 2014: 91-92. |
[17] | NARDO A, LI Bofeng, TEUNISSEN P J G , Partial Ambiguity Resolution for Ground and Space-Based Applications in a GPS+Galileo Scenario: A Simulation Study[J]. Advances in Space Research, 2016,57(1):30-45. DOI: 10.1016/j.asr.2015.09.002 |
[18] | ZOULIDA M, POLLET A, COULOT D , et al. Multi-technique combination of space geodesy observations: Impact of the Jason-2 satellite on the GPS satellite orbits estimation[J]. Advances in Space Research, 2016,58(7):1376-1389. DOI: 10.1016/j.asr.2016.06.019 |
[19] | BAI Weihua, SUN Yueqiang, DU Qifei , et al. An Introduction to the FY3 GNOS Instrument and Mountain-Top Tests[J]. Atmospheric Measurement Techniques, 2014,7(6):1817-1823.DOI: 10.5194/amt-7-1817-2014 |
[20] | ZHAO Qile, WANG Chen, GUO Jing , et al. Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard GNSS data[J]. GPS Solutions, 2017. DOI: 10.1007/s10291-017-0604-y |
[21] | DE BAKKER P F, VAN DER MAREL H, TIBERIUS C C J M . Geometry-free Undifferenced, Single and Double Differenced Analysis of Single Frequency GPS, EGNOS and GIOVE-A/B Measurements[J]. GPS Solutions, 2009,13(4):305-314. DOI: 10.1007/s10291-009-0123-6 |
[22] | DE BAKKER P F . On User Algorithms for GNSS Precise Point Positioning[D]. Netherlands: Delft University of Technology, 2016: 118-145. |
[23] | ZHAO Qile, DAI Zhiqiang, SUN Binzi , et al. Analysis of BDS Pseudorange Accuracy and Time Correlation Using the Least-Squares Variance Component Estimation Method[J]. Science of Surveying and Mapping, 2016,41(2):182-186. |
[24] | LIU Weiping, HAO Jinming, TIAN Yingguo , et al. Solution Method and Precision Analysis of Double-difference Dynamic Precise Orbit Determination of BeiDou Navigation Satellite System[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(2):131-139.DOI: 10.11947/j.AGCS.2016.20150190 |
[25] | CERRI L, BERTHIAS J P, BERTIGER W I , et al. Precision Orbit Determination Standards for the Jason Series of Altimeter Missions[J]. Marine Geodesy, 2010,33(S1):379-418. |
[26] | ZHOU Shanshi, HU Xiaogong, WU Bin . Orbit Determination and Prediction Accuracy Analysis for a Regional Tracking Network[J]. Science China Physics, Mechanics and Astronomy, 2010,53(6):1130-1138. |
[1] | Kun QIN,Hui LIN,Yang YUE,Feng ZHANG,Jianya GONG. Spatial Humanities and Geo-computation for Social Sciences:Advances and Applications [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 1-6. |
[2] | Zhuo LIU,Hui LIN,Qinghua HE,Yuling WANG. Temporal-spatial Distribution of Various Types of Crime in the Special Wards of Tokyo [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 19-28. |
[3] | Yuyun LIANG,Yao YAO,Xiaoqin YAN,Qingfeng GUAN. Estimating the Spatial Variation of Electricity Consumption Anomalies and the Influencing Factors [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 29-37. |
[4] | Qixin WANG,Kun QIN,Donghai LIU,Gang XU,Yanqing XU,Yang ZHOU,Rui XIAO. Spatial Interaction Network Analysis of Crude Oil Trade Relations between Countries along the Belt and Road [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 60-74. |
[5] | Yibin YAO,Yuanxi YANG,Heping SUN,Jiancheng LI. Geodesy Discipline: Progress and Perspective [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 1-10. |
[6] | Huan XU,Jinhai YU,Xiaoyun WAN,Lei LIANG. An Expression for Gravity Generated by an Anomalous Geological Body and Its Application in Bathymetry Inversion [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 63-73. |
[7] | Jingguo LYU, Xingbin YANG, Danlu ZHANG, Shan JIANG. High-resolution Remote Sensing Image Semi-global Matching Method Considering Geometric Constraints of Connection Points and Image Texture Information [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 97-112. |
[8] | Junfeng XIE,Ren LIU,Yongkang MEI,Wei LIU,Jianping PAN. Preliminary Pointing Bias Calibration of ZY3-03 Laser Altimeter [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 91-100. |
[9] | Qing ZHAO,Antonio PEPE,Adam DEVLIN,Shuangshang ZHANG,Francesco FALABELLA,Giovanni ZENI,Qiang WANG,Jingzhao DING,Danan DONG,Min LIU,Qing XU,Xia LEI,Jiayi PAN. Impact of Sea-Level-Rise and Human Activities in Coastal Regions: An Overview [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 124-143. |
[10] | Keren DAI,Peilian RAN,Zhenhong LI,Julian AUSTIN,Jan-Peter MULLER,Qiming ZENG,Jingfa ZHANG,Leyin HU. Land Subsidence in Xiong’an New Area, China Revealed by InSAR Observations [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 70-76. |
[11] | Guang LIU,Perski ZBIGNIEW,Salvi STEFANO,Thiebes BENNI,Lixin WU,Jinghui FAN,Shibiao BAI,Lianhuan WEI,Shiyong YAN,Rui SONG,Bignami CHRISTIAN,Tolomei CRISTIANO,Stefan SCHNEIDERBAUER,João Sousa JOAQUIM. Land Surface Displacement Geohazards Monitoring Using Multi-temporal InSAR Techniques [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 77-87. |
[12] | Gang LI,Hui LIN,Qinghua YE,Liming JIANG,Andrew HOOPER,Yinyi LIN. Acceleration of Glacier Mass Loss after 2013 at the Mt. Everest (Qomolangma) [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 60-69. |
[13] | Wenyue GUO, Anzhu YU, Qun SUN, Shaomei LI, Qing XU, Bowei WEN, Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 76-87. |
[14] | Qiuli CHEN,Hui YANG,Zhonggui CHEN,Haihong WANG,Chen WANG. Solar Radiation Pressure Modeling and Application of BDS Satellites [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 45-52. |
[15] | Yingdong PI,Baorong XIE,Bo YANG,Yiling ZHANG,Xin LI,Mi WANG. On-orbit Geometric Calibration of Linear Push-broom Optical Satellite Based on Sparse GCPs [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 64-75. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||