[1] |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Texas: ACM, 2000: 93-104.
|
[2] |
WANG Yi, CHEN Qixin, HONG Tao, et al. Review of smart meter data analytics: applications, methodologies, and challenges[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3125-3148.
doi: 10.1109/TSG.2018.2818167
|
[3] |
BUZAU M M, TEJEDOR-AGUILERA J, CRUZ-ROMERO P, et al. Detection of non-technical losses using smart meter data and supervised learning[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 2661-2670.
doi: 10.1109/TSG.2018.2807925
|
[4] |
MICHELI G, SODA E, VESPUCCI M T, et al. Big data analytics: an aid to detection of non-technical losses in power utilities[J]. Computational Management Science, 2019, 16(1-2): 329-343.
doi: 10.1007/s10287-018-0325-x
|
[5] |
JOKAR P, ARIANPOO N, LEUNG V C M. Electricity theft detection in AMI using customers’ consumption patterns[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 216-226.
doi: 10.1109/TSG.2015.2425222
|
[6] |
ANGELOS E W S, SAAVEDRA O R, CORTÉS O A C, et al. Detection and identification of abnormalities in customer consumptions in power distribution systems[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2436-2442.
doi: 10.1109/TPWRD.2011.2161621
|
[7] |
JÚNIOR L A P, RAMOS C C O, RODRIGUES D, et al. Unsupervised non-technical losses identification through optimum-path forest[J]. Electric Power Systems Research, 2016, 140: 413-423.
doi: 10.1016/j.epsr.2016.05.036
|
[8] |
BUZAU M M, TEJEDOR-AGUILERA J, CRUZ-ROMERO P, et al. Hybrid deep neural networks for detection of non-technical losses in electricity smart meters[J]. IEEE Transactions on Power Systems, 2020, 35(2): 1254-1263.
doi: 10.1109/TPWRS.2019.2943115
|
[9] |
BIAN Jiahao, WANG Lei, SCHERER R, et al. Abnormal detection of electricity consumption of user based on particle swarm optimization and long short term memory with the attention mechanism[J]. IEEE Access, 2021, 9: 47252-47265.
doi: 10.1109/ACCESS.2021.3062675
|
[10] |
BRUNSDON C, FOTHERINGHAM A S, CHARLTON M E. Geographically weighted regression: a method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28(4): 281-298.
doi: 10.1111/j.1538-4632.1996.tb00936.x
|
[11] |
FOTHERINGHAM A S, YANG Wenbai, KANG Wei. Multiscale geographically weighted regression[J]. Annals of the American Association of Geographers, 2017, 107(6): 1247-1265.
doi: 10.1080/24694452.2017.1352480
|
[12] |
LUO Lili, MEI Kun, QU Liyin, et al. Assessment of the geographical detector method for investigating heavy metal source apportionment in an urban watershed of eastern China[J]. Science of the Total Environment, 2019, 653: 714-722.
doi: 10.1016/j.scitotenv.2018.10.424
|
[13] |
SHRESTHA A, LUO Wei. Analysis of groundwater nitrate contamination in the Central Valley: comparison of the geodetector method, principal component analysis and geographically weighted regression[J]. ISPRS International Journal of Geo-Information, 2017, 6(10): 297.
doi: 10.3390/ijgi6100297
|
[14] |
XU Li, DU Hongru, ZHANG Xiaolei. Driving forces of carbon dioxide emissions in China’s cities: an empirical analysis based on the geodetector method[J]. Journal of Cleaner Production, 2021, 287: 125169.
doi: 10.1016/j.jclepro.2020.125169
|
[15] |
WANG Jinfeng, LI Xinhu, CHRISTAKOS G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127.
doi: 10.1080/13658810802443457
|
[16] |
WANG Jinfeng, ZHANG Tonglin, FU Bojie. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67: 250-256.
doi: 10.1016/j.ecolind.2016.02.052
|
[17] |
YAO Yao, ZHANG Jiaqi, QIAN Chen, et al. Delineating urban job-housing patterns at a parcel scale with street view imagery[J]. International Journal of Geographical Information Science, 2021, 35(10): 1927-1950.
doi: 10.1080/13658816.2021.1895170
|
[18] |
ZHAI Wei, BAI Xueyin, SHI Yu, et al. Beyond Word2vec: an approach for urban functional region extraction and identification by combining Place2vec and POIs[J]. Computers, Environment and Urban Systems, 2019, 74: 1-12.
doi: 10.1016/j.compenvurbsys.2018.11.008
|
[19] |
CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: a seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6(1): 3-73.
|
[20] |
CHOU J S, TELAGA A S, CHONG W K, et al. Early-warning application for real-time detection of energy consumption anomalies in buildings[J]. Journal of Cleaner Production, 2017, 149: 711-722.
doi: 10.1016/j.jclepro.2017.02.028
|
[21] |
LEONG K, LEUNG C, MIAO Chunyan, et al. Detection of anomalies in activity patterns of lone occupants from electricity usage data[C]// Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver: IEEE, 2016: 1361-1369.
|
[22] |
WANG Jinfeng, XU Chengdong. Geodetector: principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010
|
[23] |
ZHANG Xinchang, LI Shaoying, ZHOU Qiming, et al. Logical and innovative construction of digital twin city[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 113-120.
|
[24] |
ZHANG Tianning, SONG Hongquan, ZHOU Boyan, et al. Effects of air pollutants and their interactive environmental factors on winter wheat yield[J]. Journal of Cleaner Production, 2021, 305: 127230.
doi: 10.1016/j.jclepro.2021.127230
|
[25] |
ZHANG Xiangxue, NIE Juan, CHENG Changxiu, et al. Spatial pattern of the population casualty rate caused by super typhoon Lekima and quantification of the interactive effects of potential impact factors[J]. BMC Public Health, 2021, 21(1): 1260.
doi: 10.1186/s12889-021-11281-y
pmid: 34187432
|