Journal of Geodesy and Geoinformation Science ›› 2021, Vol. 4 ›› Issue (4): 97-112.doi: 10.11947/j.JGGS.2021.0408
Previous Articles Next Articles
Jingguo LYU(),Xingbin YANG,Danlu ZHANG,Shan JIANG
Received:
2021-02-28
Accepted:
2021-08-30
Online:
2021-12-20
Published:
2023-05-17
About author:
Jingguo LYU, male, PhD, majors in geo-informatics and photogrammetry.E-mail: Supported by:
Jingguo LYU,Xingbin YANG,Danlu ZHANG,Shan JIANG. High-resolution Remote Sensing Image Semi-global Matching Method Considering Geometric Constraints of Connection Points and Image Texture Information[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 97-112.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Comparison of computing time"
Image resolution 652×665 | Initial parallax search range/pixel | Calculation time of cost matrix/s | Calculation time of cost accumulation in 8 directions/s | Calculation time of optimal parallax selection /s | Total time/s |
---|---|---|---|---|---|
Our method | 32 | 0.14 | 0.93 | 0.085 | 1.15 |
tSGM | 326 | 0.26 | 2.51 | 0.087 | 2.86 |
SGM | 652 | 0.61 | 3.59 | 0.11 | 4.31 |
Tab.5
Comparison results of calculation performance of three algorithms"
Stereopair of Wordview3 12984×12928 | Input | Module function | Output | Memory cost/G | Calculation time/min |
---|---|---|---|---|---|
Our method | Stereopair after block adjustment | Dense matching and forward intersection | Dense point cloud | 5.46 | 11 |
ENVI | Original Stereopair | Block adjustment,dense matching and forward intersection | Dense point cloud and DSM | 5.69 | 9 |
ERDAS | Stereopair after block adjustment | Dense matching and forward intersection | Dense point cloud | 4.47 | 19 |
[1] |
SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1-3):7-42.
doi: 10.1023/A:1014573219977 |
[2] | KOLMOGOROV V, MONASSE P, TAN P. Kolmogorov and Zabih’s graph cuts stereo matching algorithm[J]. Image Processing on Line, 2014(4):220-251. |
[3] | FELZENSZWALB P F, HUTTENLOCHER D P. Efficient belief propagation for early vision[C]// Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC, USA:IEEE, 2004:261-268. |
[4] | HIRSCHMULLER H. Accurate and efficient stereo processing by semi-global matching and mutual information[C]// Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005:807-814. |
[5] | D’ANGELO P. Improving semi-global matching:cost aggregation and confidence measure[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016,XLI- B1:299-304. |
[6] | WENZEL K. Dense image matching for close range photogram-metry[D]. Stuttgart:University of Stuttgart, 2016. |
[7] | ROTHERMEL M, WENZEL K, FRITSCH D, et al. SURE:photogrammetric surface reconstruction from imagery[C]// Proceedings of LC3D Workshop. Berlin:[s.n.], 2012. |
[8] | KUSCHK G, D’ANGELO P, QIN R, et al. DSM accuracy evaluation for the ISPRS commission I image matching benchmark[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2014,XL- 1:195-200. |
[9] | D’ANGELO P. Evaluation of ZY-3 for DSM and ortho image generation[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL- 1/W1:57-61. |
[10] | GHUFFAR S. Satellite stereo based digital surface model generation using semi global matching in object and image space[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016(3-1):63-68. |
[11] | BETHMANN F, LUHMANN T. Semi-global matching in object space ISPRS-international Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015,XL- 3/W2:23-30. |
[12] | LUHMANN T, BETHMANN F, HASTEDT H. Dense pointclouds from combined nadir and oblique imagery by object-based semi-global multi-image matching[D]. Oldenburg:Jade University of Applied Sciences, 2017. |
[13] |
HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2):328-341.
doi: 10.1109/TPAMI.2007.1166 |
[14] | TATAR N, SAADATSERESHT M, AREFI H, et al. Quasi-epipolar resampling of high resolution satellite stereo imagery for semi global matching[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, XL-1- W5:707-712. |
[15] | ZHANG Chunsen, LÜ Peiyu, GUO Bingxuan. Based GCP-SGM algorithm and its application in scene 3D reconstruction of archaeological excavation site[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12):1575-1581. |
[16] | ZHANG Yanfeng. Pixel-wise dense matching of aerial images with multi-conditional constraints[D]. Beijing:Chinese Academy of Surveying and Mapping, 2014. |
[17] | ROTHERMEL M. Development of A SGM-based multi-view reconstruction framework for aerial imagery[D]. Stuttgart:University of Stuttgart, 2016. |
[18] | GONG K, FRITSCH D. A detailed study about digital surface model generation using high resolution satellite stereo imagery[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016(3-1):69-76. |
[19] | YAN Li, FEI Liang, CHEN Changhai, et al. A multi-view dense matching algorithm of high resolution aerial images based on graph network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1171-1181. |
[20] | LIU Jun, ZHANG Yongsheng, WANG Donghong. Precise positioning of high spatial resolution satellite images based on RPC models[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(1):30-34. |
[21] | LI Deren, ZHANG Guo, JIANG Wanshou, et al. SPOT-5 HRS satellite imagery block adjustment without GCPS or with single GCP[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5):377-381. |
[22] | MORGAN M, KIM K O, JEONG S, et al. Epipolar resampling of space-borne linear array scanner scenes using parallel projection[J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(11):1255-1263. |
[23] | ZHANG Guo, PAN Hongbo, JIANG Wanshou, et al. Epipolar resampling and epipolar geometry reconstruction of linear array scanner scenes based on RPC model[J]. Remote Sensing for Land & Resources, 2010, 22(4):1-5. |
[24] | HIRSCHMULLER H, SCHARSTEIN D. Evaluation of cost functions for stereo matching[C]// Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA:IEEE, 2007:1-8. |
[25] | HUMENBERGER M, ENGELKE T, KUBINGER W. A census-based stereo vision algorithm using modified semi-global matching and plane fitting to improve matching quality[C]// Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops. San Francisco, CA, USA:IEEE, 2010:77-84. |
[26] | SPANGENBERG R, LANGNER T, ADFELDT S, et al. Large scale semi-global matching on the CPU[C]// Proceedings of 2014 IEEE Intelligent Vehicles Symposium. Dearborn, MI, USA:IEEE, 2014:195-201. |
[27] | YUAN Xiuxiao, CAO Jinshan. Theory and method of precise object positioning of high resolution satellite imagery[M]. Beijing: Science Press, 2012:182-183. |
[1] | Xingbin YANG, Jingguo LYU, Shan JIANG, Danlu ZHANG. High-resolution Remote Sensing Image Semi-global Matching Method Considering Geometric Constraints of Connection Points and Image Texture Information [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 86-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||