Journal of Geodesy and Geoinformation Science ›› 2020, Vol. 3 ›› Issue (4): 98-109.doi: 10.11947/j.JGGS.2020.0410
Previous Articles Next Articles
Giovanni LANEVE1(),Roberto LUCIANI2,Pablo MARZIALETTI2,Stefano PIGNATTI3,Wenjiang HUANG4,Yue SHI4,Yingying DONG4,Huichun YE4
Received:
2020-10-02
Accepted:
2020-11-17
Online:
2020-12-20
Published:
2021-01-15
About author:
Giovanni LANEVE, professor, majors in the new algorithms for the exploitations of satellite images, etc.E-mail: Giovanni LANEVE, Roberto LUCIANI, Pablo MARZIALETTI, Stefano PIGNATTI, Wenjiang HUANG, Yue SHI, Yingying DONG, Huichun YE. Dragon 4-Satellite Based Analysis of Diseases on Permanent and Row Crops in Italy and China[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 98-109.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig.1
Area of Interest. On left the Province of Lecce is shown with, in grey, the distribution of olive groves, according to CORINE Land Cover (CLC) 2012 map. In red some of the points analyzed by the local authorities to monitor the presence of the disease. On the right, in red are shown the two CLC 223 polygons selected for illustrating the results of the analysis (see following paragraphs)"
Tab.1
List of Sentinel-2 images available for the analysis on area of interest in Italy"
2015 | 2016 (cont) | 2017 | 2017 (cont) | 2017 (cont) |
---|---|---|---|---|
2015/07/15 | 2016/05/30 | 2017/01/02 | 2017/06/14 | 2017/08/18 |
2015/07/25 | 2016/06/26 | 2017/01/25 | 2017/06/21 | 2017/08/23 |
2015/08/01 | 2016/06/29 | 2017/02/11 | 2017/06/24 | 2017/08/25 |
2015/08/14 (0 e 1) | 2016/07/06 | 2017/02/14 | 2017/07/01 | 2017/08/28 |
2015/08/24 | 2016/07/09 | 2017/03/03 | 2017/07/04 | 2017/08/30 |
2015/08/31 | 2016/07/19 | 2017/03/06 | 2017/07/06 | 2017/09/02 |
2015/09/13 | 2016/07/29 | 2017/03/16 | 2017/07/09 | 2017/09/12 |
2015/10/23 | 2016/08/15 | 2017/03/23 | 2017/07/11 | 2017/10/17 |
2015/12/09 | 2016/08/25 | 2017/04/12 | 2017/07/14 | 2017/10/27 |
2015/12/22 | 2016/08/28 | 2017/04/15 | 2017/07/19 | 2017/10/29 |
2016 | 2016/10/14 | 2017/05/02 | 2017/07/21 | 2017/12/06 |
2016/01/01 | 2016/11/13 | 2017/05/05 | 2017/07/24 | 2017/12/08 |
2016/04/20 | 2016/11/23 | 2017/05/22 | 2017/07/29 | 2017/12/23 |
2016/04/30 | 2016/12/03 | 2017/06/01 | 2017/07/31 | 2017/12/31 |
2016/05/07 | 2016/12/16 | 2017/06/04 | 2017/08/05 | — |
2016/05/27 | 2016/12/26 | — | 2017/08/08 | — |
Tab.2
GF1 sensor characteristics"
VHR sensor | HR sensor | |
---|---|---|
Main sensor characteristics | 2×HR (High Resolu- tion Cameras) | 4×WFV(Wide field of view Cameras) |
Spatial resolution | Pan: 2m, MS: 8m | MS: 16m |
Spectral resolution | Pan: 0.45~0.90 B1: 0.45~0.52μm B2: 0.52~0.59μm B3: 0.63~0.69μm B4: 0.77~0.89μm | B1: 0.45~0.52μm B2: 0.52~0.59μm B3: 0.63~0.69μm B4: 0.77~0.89μm |
Swath width | 69km with 2 cameras | 830km with 4 cameras mosaic |
Data quantization | 10bit | 10bit |
Revisit capability | 4 days at equator (roll needed) | 4 days (no roll needed) |
Fig.6
The final approach to the olive groves classification problem. New profiles, based on the evolution of the relation between carotenoid/chlorophyll content, are introduced. These profiles are mixed together with phenological data determining a new set of decision rules to be exploited by the MDT algorithm"
Fig.8
Details of the classification obtained by using vegetation index (green areas) compared with the one provided by Corine (red polygon). White regions in the Corine polygons correspond to areas in which less of the 80% of the surface is classified as olive groves. A qualitative estimate of the olive trees fraction cover, in each of the blue polygons obtained by image segmentation, is given. Areas with density values larger than 1 correspond to woodland/forest"
Tab.4
Summary of spectral vegetation indexes used for detecting yellow rust (Sentinel 2 case)"
SVIs | Definition | Formula |
---|---|---|
NDVI | Normalized difference vegetation index | (RINR-RR)/(RNIR+RR) |
EVI | Enhanced vegetation index | 2.5(RNIR-RR)/(RNIR+6RR-0.5RB+1) |
RGR | Ration of red and green | RR/RG |
VARIgreen | Visible atmospherically resistant index | (RG-RR)/(RG+RR) |
NDV | Normalized difference vegetation index red-edge1 | *(RNIR- |
NREDI1 | Normalized red-edge1 index | ( |
NREDI2 | Normalized red-edge2 index | ( |
NREDI3 | Normalized red-edge3 index | ( |
PSRI | Plant senescence reflectance index | (RR-RG)/ |
REDSI | Red edge disease stress index | **(705-665)·( |
[1] | ELBEAINO T, YASEEN T, VALENTINI F, et al. Identification of three potential insect vectors of Xylella fastidiosa in southern Italy[J]. Phytopathologia Mediterranea, 2014,53(1):328-332. |
[2] |
EDDINE B M I, VALERIO M, FRANCO V, et al. Seasonal Fluctuations of Sap-Feeding Insect Species Infected by Xylella fastidiosa in Apulian Olive Groves of Southern Italy[J]. Journal of Economic Entomology, 2016(4):1512-1518.
doi: 10.1093/jee/tow123 pmid: 27401111 |
[3] | JANSE J D, OBRADOVIC A, XYLELLA. Fastidiosa: its biology, diagnosis, control and risks[J]. Journal of Plant Pathology, 2010,92(S1):35-48. |
[4] | DORIGO W, ZURITA-MILLA R, DE WIT A J, et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling[J]. International Journal of Applied Earth Observation & Geoinformation, 2007,9(2):165-193. |
[5] | XIE Q, HUANG W, DASH J, et al. Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions[J]. Advances in Space Research, 2015,56(11):2365-2373. |
[6] |
CHRISTOU P, TWYMAN R M. The potential of genetically enhanced plants to address food insecurity[J]. Nutrition Research Reviews, 2004. DOI: 10.1079/NRR200373.
doi: 10.1017/S0954422420000074 pmid: 32151298 |
[7] | STRANGE R N, SCOTT P R. Plant disease: a threat to global food security.[J]. Annual Review of Phytopathology, 2005,43(1):83-116. |
[8] | HUANG W, LUO J, ZHANG J, et al. Crop Disease and Pest Monitoring by Remote Sensing[M]. London: Intech,Editor Boris Escalante, 2012. DOI: 10.5772/35204. |
[9] |
RAIKES C, BURPEE L L. Use of Multispectral Radiometry for Assessment of Rhizoctonia Blight in Creeping Bentgrass[J]. Phytopathology, 1998,88(5):446-9.
doi: 10.1094/PHYTO.1998.88.5.446 pmid: 18944925 |
[10] | MARTINELLI F, SCALENGHE R, DAVINO S, et al. Advanced methods of plant disease detection. A review[J]. Agronomy for Sustainable Development, 2015,35(1):1-25. |
[11] |
MAHLEIN A K, STEINER U, CHRISTIAN HILLNHÜTTER, et al. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases[J]. Plant Methods, 2012,8(1):3.
doi: 10.1186/1746-4811-8-3 pmid: 22273513 |
[12] | LÓPEZ-LÓPEZ M, CALDERÓN R, GONZÁLEZ-DUGO V, et al. Early detection and quantification of almond red leaf blotch using high-resolution hyperspectral and thermal imagery[J]. Remote Sensors, 2016,8(4):276. |
[13] | MAHLEIN A K, KUSKA M T, THOMAS S, et al. Plant disease detection by hyperspectral imaging: from the lab to the field[J]. Advances in Animal Biosciences: Precision Agriculture (ECPA), 2017,8(2):238-243. |
[14] |
WANG X, ZHANG M, ZHU J, et al. Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN)[J]. International Journal of Remote Sensing, 2008,29(6):1693-1706.
doi: 10.1080/01431160701281007 |
[15] |
DELALIEUX S, AARDT J V, KEULEMANS W, et al. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications[J]. European Journal of Agronomy, 2007,27(1):130-143.
doi: 10.1016/j.eja.2007.02.005 |
[16] | BECK P S A, ZARCO-TEJADA P, STROBL P, et al. The feasibility of detecting trees affected by the Pine Wood Nematode using remote sensing[J]. JRC Technical Report, 2015. DOI: 10.2788/711975. |
[17] |
MAHLEIN A K. Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping[J]. Plant Disease, 2016,100(2):241-251.
doi: 10.1094/PDIS-03-15-0340-FE pmid: 30694129 |
[18] | AA.VV. Stimulating Scientific Exchange in Earth Observation [C]//Science and Technology. Wuhan: DRAGON 4 Cooperation, 2018: 86-89. |
[19] |
TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979,8(2):127-150.
doi: 10.1016/0034-4257(79)90013-0 |
[20] | GENESIS T, YENGOH D D, LENNART O, et al. The use of the Normalized Difference Vegetation Index (NDVI) to assess land degradation at multiple scales: a review of the current status, future trends, and practical considerations[R]. Lund: Lund University Center for Sustainability Studies (LUCSUS), and The Scientific and Technical Advisory Panel of the Global Environment Facility (STAP/GEF), 2014. |
[21] |
DIAZ-PACHECO J, GUTIÉRREZ J. Exploring the limitations of CORINE Land Cover for monitoring urban land-use dynamics in metropolitan areas[J]. Journal of Land Use Science, 2014,9(3):243-259.
doi: 10.1080/1747423X.2012.761736 |
[22] |
FERANEC J, HAZEU G, CHRISTENSEN S, et al. Corine land cover change detection in Europe (case studies of the Netherland and Slovakia)[J]. Land Use Policy, 2007,24(1):234-247.
doi: 10.1016/j.landusepol.2006.02.002 |
[23] |
HEIJMANS H J A M, RONSE C. The algebraic basis of mathematical morphology I. Dilations and Erosions[J]. Computer Vision, Graphics, and Image Processing, 1990,50(3):245-295.
doi: 10.1016/0734-189X(90)90148-O |
[24] | SOLOMON C, BRECKON T. Fundamentals of Digital Image Processing: a practical approach with examples in MATLAB[J]. Wiley-Blackwell, 2011. DOI: 10.1002/9780470689776. |
[25] |
BRADLEY B A, MUSTARD J F. Comparison of phenology trends by land cover class: a case study in the Great Basin, USA[J]. Global Change Biology, 2008. DOI: 10.1111/j.1365-2486.2007.01479.x.
doi: 10.1111/gcb.15499 pmid: 33347685 |
[26] |
AGUILERA F, FORNACIARI M, RUIZ-VALENZUELA L, et al. Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region[J]. Int. J. Biometeorol, 2015. DOI: 10.1007/s00484-014-0876-7.
doi: 10.1007/s00484-020-02041-5 pmid: 33219418 |
[27] |
GITELSON A, ZUR Y, CHIVKUNOVA O, et al. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy[J]. Photochemistry and Photobiology, 2002. DOI: 10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2.
doi: 10.1111/php.13361 pmid: 33274440 |
[28] |
ZHENG Q, HUANG W, CUI X, et al. New spectral index for detecting wheat yellow rust using sentinel-2 multispectral imagery[J], Sensors, 2018,18(3):868-886.
doi: 10.3390/s18030868 |
[29] |
SHI Y, HUANG W, GONZÁLEZ-MORENO P, et al. Based Rust Spectral Feature Set (WRSFs): A novel spectral feature set based on continuous Wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat[J]. Remote Sensing, 2018,10(4):525-543.
doi: 10.3390/rs10040525 |
[30] |
SHI Y, HUANG W, LUO J, et al. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers & Electronics in Agriculture, 2018. DOI: 10.1016/j.compag.2017.07.019.
doi: 10.1016/j.compag.2013.08.003 pmid: 26937062 |
[31] |
FERNAND MEYER. Topographic distance and watershed lines[J]. Signal Processing, 1994,38(1):113-125.
doi: 10.1016/0165-1684(94)90060-4 |
[1] | Jiawei ZHANG,Hua QI. Data Mining and Spatial Analysis of Social Media Text Based on the BERT-CNN Model to Achieve Situational Awareness: a Case Study of COVID-19 [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 38-48. |
[2] | Zhaohui XUE,Xiangyu NIE. Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization for Hyperspectral Image Classification [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 73-90. |
[3] | Kexian WANG,Shunyi ZHENG,Rui LI,Li GUI. A Deep Double-Channel Dense Network for Hyperspectral Image Classification [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. |
[4] | Xiaochen WANG,Hongchao MA,Liang ZHANG,Zhan CAI,Haichi MA. Point Cloud Classification and Accuracy Analysis Based on Feature Fusion [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 38-48. |
[5] | Yanjun WANG,Shaochun LI,Mengjie WANG,Yunhao LIN. A Simple Deep Learning Network for Classification of 3D Mobile LiDAR Point Clouds [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 49-59. |
[6] | Yi ZHAO,Mi JIANG,Zhangfeng MA. Integration of SAR Polarimetric Features and Multi-spectral Data for Object-Based Land Cover Classification [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||