Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (3): 46-57.doi: 10.11947/j.JGGS.2023.0305
• Literature Review • Previous Articles Next Articles
Weiping JIANG(), Qile ZHAO, Min LI(), Jing GUO, Jianghui GENG, Zhao LI, Shengfeng GU, Qiang ZHANG, Zhigang HU, Na WEI
Received:
2023-08-21
Accepted:
2023-08-26
Online:
2023-09-20
Published:
2023-10-31
Contact:
Min LI E-mail: About author:
Weiping JIANG, male, PhD, professor, majors in satellite geodesy and its applications. E-mail: wpjiang@whu.edu.cn
Supported by:
Weiping JIANG, Qile ZHAO, Min LI, Jing GUO, Jianghui GENG, Zhao LI, Shengfeng GU, Qiang ZHANG, Zhigang HU, Na WEI. The Progress of IGS Analysis Center at Wuhan University[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 46-57.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig.3
The mean value (a) and the STD (b) for GLONASS IFB (1:IFB1 ; 2:IFB2 ) of each receiver-satellite pair for IGS stations in March 2017 based on the undifferenced and uncombined PPP solution (The X-axis is grouped according to the receiver types, the color bar represents the STD value in ns, and the averaged STD is about 1.107ns)"
Fig.5
Spatial distribution of WRMS differences in percentage using the three loading corrections (Black circles indicate that a station’s WRMS change exceeded the limits of the scale range. Unit of WRMS difference is %. Top panel shows the QLM model, and the middle panel shows the OMD model, and the bottom panel shows the GGFC model)"
[1] | BEUTLER G, ROTHACHER M, SCHAER S, et al. The International GPS Service (IGS): an interdisciplinary service in support of earth sciences[J]. Advances in Space Research, 1999, 23(4): 631-653. DOI: 10.1016/S0273-1177(99)00160-X. |
[2] |
BEUTLER G, MOORE A W, MUELLER I I. The international global navigation satellite systems service: development and achievements[J]. Journal of Geodesy, 2009, 83(3): 297-307.
doi: 10.1007/s00190-008-0268-z |
[3] | DOW J M, NEILAN R E, RIZOS C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems[J]. Journal of Geodesy, 2009, 83(3-4): 191-198. DOI: 10.1007/s00190-008-0300-3. |
[4] | GUO Jing, XU Xiaolong, ZHAO Qile, et al. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison[J]. Journal of Geodesy, 2016, 90(2): 143-159. DOI: 10.1007/s00190-015-0862-9. |
[5] | MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) — achievements, prospects and challenges[J]. Advances in Space Research, 2017, 59(7): 1671-1697. DOI: 10.1016/j.asr.2017.01.011. |
[6] | GENG Jianghui, ZHANG Qiyuan, LI Guangcai, et al. Observable-specific phase biases of Wuhan multi-GNSS experiment analysis center’s rapid satellite products[J]. Satellite Navigation, 2022, 3(1): 23. DOI: 10.1186/s43020-022-00084-0. |
[7] | CHEN Guo, GUO Jing, GENG Tao, et al. Multi-GNSS orbit combination at Wuhan University: strategy and preliminary products[J]. Journal of Geodesy, 2023, 97(5): 41. DOI: 10.1007/s00190-023-01732-2. |
[8] | WANG Chen, GUO Jing, ZHAO Qile, et al. Empirically derived model of solar radiation pressure for Beidou GEO satellites[J]. Journal of Geodesy, 2019, 93(6): 791-807. DOI: 10.1007/s00190-018-1199-y. |
[9] | GUO Jing, WANG Chen, CHEN Guo, et al. BDS-3 precise orbit and clock solution at Wuhan University: status and improvement[J]. Journal of Geodesy, 2023, 97(2): 15. DOI: 10.1007/s00190-023-01705-5. |
[10] | MONTENBRUCK O, STEIGENBERGER P, HUGENTOBLER U. Enhanced solar radiation pressure modeling for Galileo satellites[J]. Journal of Geodesy, 2015, 89(3): 283-297. DOI: 10.1007/s00190-014-0774-0. |
[11] | MONTENBRUCK O, STEIGENBERGER P, DARUGNA F. Semi-analytical solar radiation pressure modeling for QZS-1 orbit-normal and yaw-steering attitude[J]. Advances in Space Research, 2017, 59(8): 2088-2100. DOI: 10.1016/j.asr.2017.01.036. |
[12] | ZHAO Qile, CHEN Guo, GUO Jing, et al. An a priori solar radiation pressure model for the QZSS Michibiki satellite[J]. Journal of Geodesy, 2018, 92(2): 109-121. DOI: 10.1007/s00190-017-1048-4. |
[13] | GSA. European GNSS Service Center; Galileo satellite metadata[EB/OL]. [2023-02-01]. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata. |
[14] | CAO. Cabinet Office; The history information of QZS-1 operation[EB/OL]. [2023-02-01]. https://qzss.go.jp/en/technical/qzssinfo/khp0mf0000000wuf-att/ohi-qzs1_1_1.pdf. |
[15] | RODRÍGUEZ SOLANO C J. Impact of albedo modelling on GPS orbits[D]. München: Technische Universität München, 2009. |
[16] | STEIGENBERGER P, THOELERT S, MONTENBRUCK O. GNSS satellite transmit power and its impact on orbit determination[J]. Journal of Geodesy, 2018, 92(6): 609-624. DOI: 10.1007/s00190-017-1082-2. |
[17] |
WANG Chen, GUO Jing, ZHAO Qile, et al. Improving the orbits of the BDS-2 IGSO and MEO satellites with compensating thermal radiation pressure parameters[J]. Remote Sensing, 2022, 14(3): 641.
doi: 10.3390/rs14030641 |
[18] | CSNO. Beidou satellite information file[R/OL]. [2023-02-01]. http://www.beidou.gov.cn/yw/gfgg/201912/W020191230559858089737.rar. |
[19] | KOUBA J. A simplified yaw-attitude model for eclipsing GPS satellites[J]. GPS Solutions, 2009, 13(1): 1-12. DOI: 10.1007/s10291-008-0092-1. |
[20] | DILSSNER F, SPRINGER T, ENDERLE W. GPS IIF yaw attitude control during eclipse season[C]// Proceedings of the American Geophysical Union, Fall Meeting 2011. San Francisco, CA: AGU, 2011: G54A-04. |
[21] | MONTENBRUCK O, SCHMID R, MERCIER F, et al. GNSS satellite geometry and attitude models[J]. Advances in Space Research, 2015, 56(6): 1015-1029. DOI: 10.1016/j.asr.2015.06.019. |
[22] | WANG Chen, GUO Jing, ZHAO Qile, et al. Yaw attitude modeling for Beidou I06 and Beidou-3 satellites[J]. GPS Solutions, 2018, 22(4): 117. DOI: 10.1007/s10291-018-0783-1. |
[23] | YANG Chao, GUO Jing, ZHAO Qile. Yaw attitudes for BDS-3 IGSO and MEO satellites: estimation, validation and modeling with intersatellite link observations[J]. Journal of Geodesy, 2023, 97(1): 6. DOI: 10.1007/s00190-022-01698-7. |
[24] | ZHAO Qile, WANG Yintong, GU Shengfeng, et al. Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing[J]. Journal of Geodesy, 2019, 93(4): 545-560. DOI: 10.1007/s00190-018-1180-9. |
[25] | GU Shengfeng, GAN Chengkun, HE Chengpeng, et al. Quasi-4-dimension ionospheric modeling and its application in PPP[J]. Satellite Navigation, 2022, 3(1): 24. DOI: 10.1186/s43020-022-00085-z. |
[26] | ZHANG Hongping, XU Peiliang, HAN Wenhui, et al. Eliminating negative VTEC in global ionosphere maps using inequality-constrained least squares[J]. Advances in Space Research, 2013, 51(6): 988-1000. DOI: 10.1016/j.asr.2012.06.026. |
[27] | ZHANG Qiang, ZHAO Qile. Global ionosphere mapping and differential code bias estimation during low and high solar activity periods with GIMAS software[J]. Remote Sensing, 2018, 10(5): 705. DOI: 10.3390/rs10050705. |
[28] | GENG Jianghui, CHEN Xingyu, PAN Yuanxin, et al. A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University[J]. Journal of Geodesy, 2019, 93(10): 2053-2067. DOI: 10.1007/s00190-019-01301-6. |
[29] | SCHAER S. SINEX_Bias-Solution (software/technique) INdependent exchange format for GNSS biases version 1.00[EB/OL]. (2016-12-07). [2023-02-01]. https://files.igs.org/pub/data/format/sinex_bias_100.pdf. |
[30] | GENG Jianghui, CHEN Xingyu, PAN Yuanxin, et al. PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution[J]. GPS Solutions, 2019, 23(4): 91. DOI: 10.1007/s10291-019-0888-1. |
[31] | GENG Jinghui, WEN Qiang, ZHANG Qiyuan, et al. GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution[J]. Journal of Geodesy, 2022, 96(2): 11. DOI: 10.1007/s00190-022-01602-3. |
[32] | LI Bofeng, GE Haibo, BU Yuhang, et al. Comprehensive assessment of real-time precise products from IGS analysis centers[J]. Satellite Navigation, 2022, 3(1): 12. DOI: 10.1186/s43020-022-00074-2. |
[33] | YANG Xinhao, GU Shengfeng, GONG Xiaopeng, et al. Regional BDS satellite clock estimation with triple-frequency ambiguity resolution based on undifferenced observation[J]. GPS Solutions, 2019, 23(2): 33. DOI: 10.1007/s10291-019-0828-0. |
[34] | SHI Chuang, GUO Shiwei, GU Shengfeng, et al. Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity[J]. Journal of Geodesy, 2019, 93(4): 515-528. DOI: 10.1007/s00190-018-1178-3. |
[35] | PENG Yaquan, LOU Yidong, GONG Xiaopeng, et al. Real-time clock prediction of multi-GNSS satellites and its application in precise point positioning[J]. Advances in Space Research, 2019, 64(7): 1445-1454. DOI: 10.1016/j.asr.2019.06.040. |
[36] | FU Wenju, HUANG Guanwen, ZHANG Qin, et al. Multi-GNSS real-time clock estimation using sequential least square adjustment with online quality control[J]. Journal of Geodesy, 2019, 93(7): 963-976. DOI: 10.1007/s00190-018-1218-z. |
[37] | ZHANG Zheng, LOU Yidong, ZHENG Fu, et al. On GLONASS pseudo-range inter-frequency bias solution with ionospheric delay modeling and the undifferenced uncombined PPP[J]. Journal of Geodesy, 2021, 95(3): 32. DOI: 10.1007/s00190-021-01480-1. |
[38] |
HU Zhigang, ZHAO Qile, CHEN Guo, et al. First results of field absolute calibration of the GPS receiver antenna at Wuhan University[J]. Sensors, 2015, 15(11): 28717-28731. DOI: 10.3390/s151128717.
pmid: 26580616 |
[39] | ZHOU Renyu, HU Zhigang, ZHAO Qile, et al. Consistency analysis of the GNSS antenna phase center correction models[J]. Remote Sensing, 2022, 14(3): 540. DOI: 10.3390/rs14030540. |
[40] | HU Zhigang, CAI Hongliang, JIAO Wenhai, et al. Preliminary results of iGMAS BDS/GNSS absolute antenna phase center field calibration[M]// YANGChangfeng, XIEJun. China Satellite Navigation Conference (CSNC 2022) Proceedings. Singapore: Springer, 2022: 147-160. |
[41] | JIANG Weiping, LI Zhao, VAN DAM T, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series[J]. Journal of Geodesy, 2013, 87(7): 687-703. DOI: 10.1007/s00190-013-0642-3. |
[42] | WANG Kaihua, CHEN Hua, JIANG Weiping, et al. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series[J]. Journal of Geophysics and Engineering, 2018, 15(2): 554-567. DOI: 10.1088/1742-2140/aa93ae. |
[1] | Atınç Pırtı, Mehmet Ali Yücel. Evalution of the Accuracy and Performance of Multi-GNSS (MGEX) Positioning for Long Baselines by Using Different Software [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 79-92. |
[2] | Xia REN, Yuanxi YANG. Development of Comprehensive PNT and Resilient PNT [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 1-8. |
[3] | Pengyu HOU, Delu CHE, Teng LIU, Jiuping ZHA, Yunbin YUAN, Baocheng ZHANG. Status of UnDifferenced and Uncombined GNSS Data Processing Activities in China [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 135-144. |
[4] | Yamin DANG, Hu WANG, Fuping SUN, Guangwei JIANG, Xinhui ZHU, Yingyan CHENG, Qiang YANG, Yingying REN, Jing JIAO. Maintenance of Millimeter-level Geodetic Reference Framework [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 9-18. |
[5] | Zishen LI, Ningbo WANG, Ang LIU, Ang LI, Heng YANG, Dongshen ZHAO, Xiaodong REN, Andong HU. Progress of Geodesy Related Ionosphere from Chinese Scientists in the Period of 2019—2023 [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 115-123. |
[6] | Wei FENG, Yuhao XIONG, Shuang YI, Bo ZHONG, Xiaodong CHEN, Yulong ZHONG, Yuanjin PAN, Lin LIU, Wei WANG, Min ZHONG. Recent Progress on Hydrogeodesy in China [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 124-134. |
[7] | Wenyue CHE, Xiaolei WANG, Xiufeng HE, Jin LIU. Multi-mode Multi-frequency GNSS-IR Combination System for Sea Level Retrieval [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 32-39. |
[8] | Xiaolei WANG, Zijin NIU, Xiufeng HE, Runchuan LI. Monitoring of Coastal Subsidence Changes Based on GNSS Positioning and GNSS-IR [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 71-80. |
[9] | Shuang ZHAO, Zhenjie WANG, Zhixi NIE, Kaifei HE, Huimin LIU, Zhen SUN. Precise Positioning Method for Seafloor Geodetic Stations Based on the Temporal Variation of Sound Speed Structure [J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 81-92. |
[10] | Jian WANG,Houzeng HAN,Fei LIU,Xin CHENG. Performance Analysis of GNSS/MIMU Tight Fusion Positioning Model with Complex Scene Feature Constraints [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 1-13. |
[11] | Xiaolei WANG,Xiufeng HE,Qin ZHANG,Mingfeng SONG,Zijin NIU. Angle Dependence Analysis Method to Determine SNR Arc Applied to GNSS-MR Sea Level Retrieval [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 14-26. |
[12] | Bowen LI,Dongkai YANG,Bo ZHANG. Simulation of Multi-satellite GNSS Reflected Signals and Design of Simulator [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 36-46. |
[13] | Xiaolei WANG,Xiufeng HE,Qin ZHANG,Zijin NIU. The Preliminary Discussion of the Potential of GNSS-IR Technology for Terrain Retrievals [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 79-88. |
[14] | Qiuli CHEN,Hui YANG,Zhonggui CHEN,Haihong WANG,Chen WANG. Solar Radiation Pressure Modeling and Application of BDS Satellites [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 45-52. |
[15] | Chen JIANG,Shubi ZHANG,Yizhi CAO,Hui LI,Hui ZHENG. A Robust Fault Detection Algorithm for the GNSS/INS Integrated Navigation Systems [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 12-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||