[1] |
YUAN Yunbin, WANG Ningbo, LI Zishen, et al. The Beidou global broadcast ionospheric delay correction model and its preliminary performance evaluation results[J]. Navigation, 2019, 66(1): 55-69.
doi: 10.1002/navi.v66.1
|
[2] |
WU Xiaoli, HU Xiaogong, WANG Gang, et al. Evaluation of COMPASS ionospheric model in GNSS positioning[J]. Advances in Space Research, 2013, 51(6): 959-968.
doi: 10.1016/j.asr.2012.09.039
|
[3] |
WANG Guangxing, BO Yadong, YU Qiang, et al. Ionosphere-constrained single-frequency PPP with an android smartphone and assessment of GNSS observations[J]. Sensors, 2020, 20(20): 5917.
doi: 10.3390/s20205917
|
[4] |
LIU A, LI Z, WANG N, et al. ASHAK: Adjusted Spherical Harmonic And Kriging method for regionalionospheric TEC modelling[Z]. Scientific Assembly of the International Association of Geodesy (IAG). Beijing, China. 2021.
|
[5] |
LIU Ang, LI Zishen, WANG Ningbo, et al. SHAKING: adjusted spherical harmonics adding Kriging method for near real-time ionospheric modeling with multi-GNSS observations[J]. Advances in Space Research, 2023, 71(1): 67-79.
doi: 10.1016/j.asr.2022.07.049
|
[6] |
LI Zishen, WANG Ningbo, HERNÁNDEZ-PAJARES M, et al. IGS real-time service for global ionospheric total electron content modeling[J]. Journal of Geodesy, 2020, 94(3): 32.
doi: 10.1007/s00190-020-01360-0
|
[7] |
ZHANG Qiang, ZHAO Qile. Global ionosphere mapping and differential code bias estimation during low and high solar activity periods with GIMAS software[J]. Remote Sensing, 2018, 10(5): 705.
doi: 10.3390/rs10050705
|
[8] |
LI Zishen, WANG Ningbo, WANG Liang, et al. Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP[J]. Journal of Geodesy, 2019, 93(9): 1659-1671.
doi: 10.1007/s00190-019-01275-5
|
[9] |
HAN Yi, WANG Lei, CHEN Ruizhi, et al. Toward real-time construction of global ionosphere map from ground and space-borne observations[J]. GPS Solutions, 2022, 26(4): 147.
doi: 10.1007/s10291-022-01337-w
|
[10] |
CHEN Zhou, LIAO Wenti, LI Haimeng, et al. Prediction of global ionospheric TEC based on deep learning[J]. Space Weather, 2022, 20(4): e2021SW002854.
doi: 10.1029/2021SW002854
|
[11] |
YANG Heng, MONTE-MORENO E, HERNÁNDEZ-PAJARES M, et al. Real-time interpolation of global ionospheric maps by means of sparse representation[J]. Journal of Geodesy, 2021, 95(6): 71.
doi: 10.1007/s00190-021-01525-5
|
[12] |
WANG Ningbo, ZHANG Yan, KRANKOWSKI A, et al. The combined real-time global ionospheric map for operational ionospheric space weather monitoring[C]// Proceedings of 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting. Gran Canaria, Spain:IEEE, 2022: 1-3.
|
[13] |
NIE Zhixi, YANG Hongzhou, ZHOU Peiyuan, et al. Quality assessment of CNES real-time ionospheric products[J]. GPS Solutions, 2019, 23(1): 11.
doi: 10.1007/s10291-018-0802-2
|
[14] |
REN Xiaodong, CHEN Jun, LI Xingxing, et al. Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers[J]. GPS Solutions, 2019, 23(4): 113.
doi: 10.1007/s10291-019-0904-5
|
[15] |
LIU Ang, WANG Ningbo, DETTMERING D, et al. Using DORIS data for validating real-time GNSS ionosphere maps[J]. Advances in Space Research, 2023, 72(1): 115-128.
doi: 10.1016/j.asr.2023.01.050
|
[16] |
REN Xiaodong, CHEN Jun, ZHANG Xiaohong, et al. Mapping topside ionospheric vertical electron content from multiple LEO satellites at different orbital altitudes[J]. Journal of Geodesy, 2020, 94: 86.
doi: 10.1007/s00190-020-01415-2
|
[17] |
WU Mengjie, GUO Peng, ZHOU Wei, et al. A new mapping function for spaceborne TEC conversion based on the plasmaspheric scale height[J]. Remote Sensing, 2021, 13(23): 4758.
doi: 10.3390/rs13234758
|
[18] |
YUAN Liangliang, HOQUE M, JIN Shuanggen. A new method to estimate GPS satellite and receiver differential code biases using a network of LEO satellites[J]. GPS Solutions, 2021, 25(2): 71.
doi: 10.1007/s10291-021-01109-y
|
[19] |
ZHOU Kangjun, CAI Hongtao, SONG Fanglei, et al. Computerized ionospheric tomography study of three-dimensional electron density distribution in the top ionosphere based on Swarm satellites GPS/TEC observations[J]. Chinese Journal of Geophysics, 2020, 63(9): 3219-3230.
|
[20] |
WANG Yang, YAO Yibin, KONG Jian, et al. Analysis of the 3-D evolution characteristics of ionospheric anomalies during a geomagnetic storm through fusion of GNSS and COSMIC-2 data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4108919.
|
[21] |
OU Ming, CHEN Longjiang, XU Na, et al. A near real-time global ionospheric data assimilation and forecast system[C]// Proceedings of 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Zhuhai, China: IEEE, 2021: 1-3.
|
[22] |
XIA Guozhen, LIU Yi, WEI Tongfeng, et al. Ionospheric TEC forecast model based on support vector machine with GPU acceleration in the China region[J]. Advances in Space Research, 2021, 68(3): 1377-1389.
doi: 10.1016/j.asr.2021.03.021
|
[23] |
LI Wang, ZHAO Dongsheng, HE Changyong, et al. Application of a multi-layer artificial neural network in a 3-D global electron density model using the long-term observations of COSMIC, Fengyun-3C, and digisonde[J]. Space Weather, 2021, 19(3): e2020SW002605.
doi: 10.1029/2020SW002605
|
[24] |
TANG Rongxin, ZENG Fantao, CHEN Zhou, et al. The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq[J]. Atmosphere, 2020, 11(4): 316.
doi: 10.3390/atmos11040316
|
[25] |
SHI Shuangshuang, ZHANG Kefei, WU Suqin, et al. An investigation of ionospheric TEC prediction maps over China using bidirectional long short-term memory method[J]. Space Weather, 2022, 20(6): e2022SW003103.
doi: 10.1029/2022SW003103
|
[26] |
YANG Ding, LI Qingfeng, FANG Hanxian, et al. One day ahead prediction of global TEC using Pix2pixhd[J]. Advances in Space Research, 2022, 70(2): 402-410.
doi: 10.1016/j.asr.2022.03.038
|
[27] |
LIU Lei, ZOU Shasha, YAO Yibin, et al. Forecasting global ionospheric TEC using deep learning approach[J]. Space Weather, 2020, 18(11): e2020SW002501.
doi: 10.1029/2020SW002501
|
[28] |
PAN Yang, JIN Mingwu, ZHANG Shunrong, et al. TEC map completion through a deep learning model: SNP-GAN[J]. Space Weather, 2021, 19(11): e2021SW002810.
doi: 10.1029/2021SW002810
|
[29] |
YANG Zhe, MORTON Y T J, ZAKHARENKOVA I, et al. Global view of ionospheric disturbance impacts on kinematic GPS positioning solutions during the 2015 St. Patrick’s Day storm[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2019JA027681.
doi: 10.1029/2019JA027681
|
[30] |
ZHAO Dongsheng, LI Wang, LI Chendong, et al. Extracting an ionospheric phase scintillation index based on 1 Hz GNSS observations and its verification in the Arctic region[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 368-383. DOI: 10.11947/j.AGCS.2021.20200454.
|
[31] |
LUO Xiaomin, GU Shengfeng, LOU Yidong, et al. Amplitude scintillation index derived from C/N0 measurements released by common geodetic GNSS receivers operating at 1 Hz[J]. Journal of Geodesy, 2020, 94(2): 27.
doi: 10.1007/s00190-020-01359-7
|
[32] |
ZHAO Dongsheng, ROBERTS G W, HANCOCK C M, et al. A triple-frequency cycle slip detection and correction method based on modified HMW combinations applied on GPS and BDS[J]. GPS Solutions, 2019, 23(1): 22.
doi: 10.1007/s10291-018-0817-8
|
[33] |
LUO Xiaomin, GU Shengfeng, LOU Yidong, et al. Better thresholds and weights to improve GNSS PPP under ionospheric scintillation activity at low latitudes[J]. GPS Solutions, 2020, 24(1): 17.
doi: 10.1007/s10291-019-0924-1
|
[34] |
LI Wang, ZHAO Dongsheng, HE Changyong, et al. Spatial-temporal behaviors of large-scale ionospheric perturbations during severe geomagnetic storms on September 7-8 2017 using the GNSS, SWARM and TIE-GCM techniques[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): e2021JA029830.
doi: 10.1029/2021JA029830
|
[35] |
WANG Liang, LI Zishen, WANG Ningbo, et al. Real-time GNSS precise point positioning for low-cost smart devices[J]. GPS Solutions, 2021, 25(2): 69.
doi: 10.1007/s10291-021-01106-1
|
[36] |
ZHAO Jiaojiao, HERNÁNDEZ-PAJARES M, LI Zishen, et al. Integrity investigation of global ionospheric TEC maps for high-precision positioning[J]. Journal of Geodesy, 2021, 95(3): 35.
doi: 10.1007/s00190-021-01487-8
|
[37] |
CHANG H, YOON M, PULLEN S, et al. Ionospheric spatial decorrelation assessment for GBAS daytime operations in Brazil[J]. Navigation, 2021, 68(2): 391-404.
doi: 10.1002/navi.v68.2
|
[38] |
JIN Biao, CHEN Shanshan, LI Dongjun, et al. Ionospheric correlation analysis and spatial threat model for SBAS in China region[J]. Advances in Space Research, 2020, 66(12): 2873-2887.
doi: 10.1016/j.asr.2020.05.010
|
[39] |
LI Mei, WANG Haitao, LIU Jie, et al. Two large earthquakes registered by the CSES satellite during its earthquake prediction practice in China[J]. Atmosphere, 2022, 13(5): 751.
doi: 10.3390/atmos13050751
|