[1] |
TEUNISSEN P J G. Zero order design: generalized inverses, adjustment, the datum problem and S-transformations[M]// GRAFARENDE W, SANSÒF. Optimization of Geodetic Networks. Berlin:Springer, 1985.
|
[2] |
ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B3): 5005-5017.
|
[3] |
WÜBBENA G, SCHMITZ M, BAGGE A. PPP-RTK: precise point positioning using state-space representation in RTK networks[C]// Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation. Long Beach, CA: The Institute of Navigation, 2005: 2584-2594.
|
[4] |
ZHANG Baocheng, OU Jikun, YUAN Yunbin, et al. Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning[J]. Science China Earth Sciences, 2012, 55(11): 1919-1928.
doi: 10.1007/s11430-012-4454-8
|
[5] |
LIU Teng, YUAN Yunbin, ZHANG Baocheng, et al. Multi-GNSS Precise Point Positioning (MGPPP) using raw observations[J]. Journal of Geodesy, 2017, 91(3): 253-268.
doi: 10.1007/s00190-016-0960-3
|
[6] |
LIU Teng, ZHANG Baocheng, YUAN Yunbin, et al. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling[J]. Journal of Geodesy, 2018, 92(11): 1267-1283.
doi: 10.1007/s00190-018-1118-2
|
[7] |
YANG Yuanxi, GAO Weiguang, GUO Shuren, et al. Introduction to Beidou-3 navigation satellite system[J]. Journal of the Institute of Navigation, 2019, 66(1): 7-18.
|
[8] |
LIU Teng, ZHANG Baocheng, YUAN Yunbin, et al. Multi-GNSS triple-frequency Differential Code Bias (DCB) determination with Precise Point Positioning (PPP)[J]. Journal of Geodesy, 2019, 93(5): 765-784.
doi: 10.1007/s00190-018-1194-3
|
[9] |
LI Bofeng, GE Haibo, SHEN Yunzhong. Comparison of ionosphere-free, UofC and uncombined PPP observation models[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7): 734-740. DOI: 10.11947/j.AGCS.2015.20140161.
|
[10] |
PAN Lin, ZHANG Xiaohong, LIU Jingnan. A comparison of three widely used GPS triple-frequency precise point positioning models[J]. GPS Solutions, 2019, 23(4): 121.
doi: 10.1007/s10291-019-0914-3
|
[11] |
ZHANG Xiaohong, HU Jiahuan, REN Xiaodong. New progress of PPP/PPP-RTK and positioning performance comparison of BDS/GNSS PPP[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1084-1100. DOI: 10.11947/j.AGCS.2020.20200328.
|
[12] |
LIU Teng, ZHANG Baocheng, YUAN Yunbin, et al. On the application of the raw-observation-based PPP to global ionosphere VTEC modeling: an advantage demonstration in the multi-frequency and multi-GNSS context[J]. Journal of Geodesy, 2020, 94(1): 1-20.
doi: 10.1007/s00190-019-01332-z
|
[13] |
LIU Teng, ZHANG Baocheng. Estimation of code Observation-Specific Biases (OSBs) for the modernized multi-frequency and multi-GNSS signals: an undifferenced and uncombined approach[J]. Journal of Geodesy, 2021, 95(8): 97.
doi: 10.1007/s00190-021-01549-x
|
[14] |
GENG Jianghui, WEN Qiang, ZHANG Qiyuan, et al. GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution[J]. Journal of Geodesy, 2022, 96(2): 11.
doi: 10.1007/s00190-022-01602-3
|
[15] |
LI Xin, LI Xingxing, JIANG Zihao, et al. A unified model of GNSS phase/code bias calibration for PPP ambiguity resolution with GPS, BDS, Galileo and GLONASS multi-frequency observations[J]. GPS Solutions, 2022, 26(3): 84.
doi: 10.1007/s10291-022-01269-5
|
[16] |
ZHANG Baocheng, TEUNISSEN P J G, YUAN Yunbin, et al. Joint estimation of Vertical Total Electron Content (VTEC) and Satellite Differential Code Biases (SDCBs) using low-cost receivers[J]. Journal of Geodesy, 2018, 92(4): 401-413.
doi: 10.1007/s00190-017-1071-5
|
[17] |
LI Min, ZHANG Baocheng, YUAN Yunbin, et al. Single-frequency Precise Point Positioning (PPP) for retrieving ionospheric TEC from BDS B1 data[J]. GPS Solutions, 2019, 23(1): 18.
doi: 10.1007/s10291-018-0810-2
|
[18] |
ZHAO Chuanbao, YUAN Yunbin, ZHANG Baocheng, et al. Ionosphere sensing with a low-cost, single-frequency, multi-GNSS receiver[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 881-892.
doi: 10.1109/TGRS.2018.2862623
|
[19] |
ZHAO Chuanbao, ZHANG Baocheng, LI Wei, et al. Simultaneous retrieval of PWV and VTEC by low-cost multi-GNSS single-frequency receivers[J]. Earth and Space Science, 2019, 6(9): 1694-1709.
doi: 10.1029/2019EA000650
|
[20] |
ZHAO Chuanbao, ZHANG Baocheng, ZHANG Xiao. SUPREME: an open-source single-frequency uncombined precise point positioning software[J]. GPS Solutions, 2021, 25(3): 86.
doi: 10.1007/s10291-021-01131-0
|
[21] |
ZHANG Baocheng, ZHAO Chuanbao, ODOLINSKI R, et al. Functional model modification of precise point positioning considering the time-varying code biases of a receiver[J]. Satellite Navigation, 2021, 2(1): 11.
doi: 10.1186/s43020-021-00040-4
|
[22] |
KE Cheng, SHENG Chuanzhen, WANG Shengli. Determination of receiver code bias variations with a modified geometry-free GNSS model[J]. Journal of Spatial Science, 2022, 67(1): 79-89.
doi: 10.1080/14498596.2021.1960913
|
[23] |
LI Min, YUAN Yunbin, ZHANG Xiao, et al. A multi-frequency and multi-GNSS method for the retrieval of the ionospheric TEC and intraday variability of receiver DCBs[J]. Journal of Geodesy, 2020, 94(10): 102.
doi: 10.1007/s00190-020-01437-w
|
[24] |
ZHANG Xiao, ZHANG Baocheng, YUAN Yunbin, et al. A refined carrier-to-code levelling method for retrieving ionospheric measurements from dual-frequency GPS data[J]. Measurement Science and Technology, 2019, 31(3): 035010.
doi: 10.1088/1361-6501/ab5267
|
[25] |
SCHAFFRIN B, BOCK Y. A unified scheme for processing GPS dual-band phase observations[J]. Bulletin Géodésique, 1988, 62(2): 142-160.
doi: 10.1007/BF02519222
|
[26] |
HOU Pengyu, ZHA Jiuping, LIU Teng, et al. Recent advances and perspectives in GNSS PPP-RTK[J]. Measurement Science and Technology, 2023, 34(5): 051002.
doi: 10.1088/1361-6501/acb78c
|
[27] |
ZHANG Baocheng, HOU Pengyu, ZHA Jiuping, et al. PPP-RTK functional models formulated with undifferenced and uncombined GNSS observations[J]. Satellite Navigation, 2022, 3(1): 3.
doi: 10.1186/s43020-022-00064-4
|
[28] |
ZHA Jiuping, ZHANG Baocheng, LIU Teng, et al. Ionosphere-weighted undifferenced and uncombined PPP-RTK: theoretical models and experimental results[J]. GPS Solutions, 2021, 25(4): 135.
doi: 10.1007/s10291-021-01169-0
|
[29] |
HOU Pengyu, ZHANG Baocheng, YASYUKEVICH Y V, et al. Multi-frequency phase-only PPP-RTK model applied to Beidou data[J]. GPS Solutions, 2022, 26(3): 76.
doi: 10.1007/s10291-022-01263-x
|
[30] |
MONTENBRUCK O, HAUSCHILD A, STEIGENBERGER P, et al. Initial assessment of the COMPASS/Beidou-2 regional navigation satellite system[J]. GPS Solutions, 2013, 17(2): 211-222.
doi: 10.1007/s10291-012-0272-x
|
[31] |
TEUNISSEN P J G. A new GLONASS FDMA model[J]. GPS Solutions, 2019, 23(4): 100.
doi: 10.1007/s10291-019-0889-0
|
[32] |
ZHANG Baocheng, HOU Pengyu, ZHA Jiuping, et al. Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK[J]. Journal of Geodesy, 2021, 95(8): 91.
doi: 10.1007/s00190-021-01546-0
|
[33] |
ZHANG Baocheng, HOU Pengyu, ODOLINSKI R. PPP-RTK: from common-view to all-in-view GNSS networks[J]. Journal of Geodesy, 2022, 96(12): 102.
doi: 10.1007/s00190-022-01693-y
|
[34] |
HOU Pengyu, ZHANG Baocheng. Decentralized GNSS PPP-RTK[J]. Journal of Geodesy, 2023, 97(7): 72.
doi: 10.1007/s00190-023-01761-x
|