Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (2): 81-92.doi: 10.11947/j.JGGS.2023.0209
Shuang ZHAO1(), Zhenjie WANG2(), Zhixi NIE2, Kaifei HE2, Huimin LIU3, Zhen SUN2
Received:
2023-01-02
Accepted:
2023-05-30
Online:
2023-06-20
Published:
2023-07-10
Contact:
Zhenjie WANG. E-mail: About author:
Shuang ZHAO (1992—), female, PhD, majors in marine navigation and positioning.E-mail: sd_zhaoshuang@126.com
Supported by:
Shuang ZHAO, Zhenjie WANG, Zhixi NIE, Kaifei HE, Huimin LIU, Zhen SUN. Precise Positioning Method for Seafloor Geodetic Stations Based on the Temporal Variation of Sound Speed Structure[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 81-92.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.2
The positioning results of the seafloor station without/with the sound speed corrections"
Index Method | Positions/m | Precision of inner coincidence/m | Unit weight MSE/ms | ||||
---|---|---|---|---|---|---|---|
x | y | z | sita_x | sita_y | sita_z | ||
Without Crr. | -154.112 | -147.897 | -3066.337 | 0.079 | 0.080 | 0.045 | 1.42 |
QP SVP Crr. | -155.019 | -147.458 | -3065.556 | 0.022 | 0.021 | 0.012 | 0.38 |
CBS SVP Crr. | -154.125 | -147.909 | -3065.481 | 0.010 | 0.010 | 0.010 | 0.18 |
[1] |
YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. Science China Earth Sciences, 2020, 50(7): 936-945.
doi: 10.1007/s11430-007-0042-8 |
[2] | LIU Jingnan, CHEN Guanxu, ZHAO Jianhu, et al. Development and trends of marine space-time frame network[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 17-37. |
[3] |
YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects in developing marine geodetic datum and marine navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 1-8.
doi: 10.11947/j.AGCS.2017.20160519 |
[4] |
YANG Yuanxi, QIN Xianping. Resilient observation models for seafloor geodetic positioning[J]. Journal of Geodesy, 2021, 95(7): 79.
doi: 10.1007/s00190-021-01531-7 |
[5] | LIU Bosheng, LEI Jiayu. Principle of water acoustics[M]. 2nd ed. Harbin: Harbin Engineering University Press, 2010. |
[6] | ZHAO Jianhu, LIU Jingnan. Multi-beam sounding and image data processing[M]. Wuhan: Wuhan University Press, 2008. |
[7] |
XU Peiliang, ANDO M, TADOKORO K. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques[J]. Earth, Planets and Space, 2005, 57(9): 795-808.
doi: 10.1186/BF03351859 |
[8] | LU Xiuping, BIAN Shaofeng, HUANG Motao, et al. An improved method for calculating average sound speed in constant gradient sound ray tracing technology[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 590-593. |
[9] |
XIN Mingzhen, YANG Fanlin, XUE Shuqiang, et al. A constant gradient sound ray tracing underwater positioning algorithm considering incident beam angle[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1535-1542.DOI: 10.11947/j.AGCS.2020.20190518.
doi: 10.11947/j.AGCS.2020.20190518 |
[10] |
WANG Junting, XU Tianhe, ZHANG Bingsheng, et al. Underwater acoustic positioning based on the robust zero-difference Kalman filter[J]. Journal of Marine Science and Technology, 2021, 26(3): 734-749.
doi: 10.1007/s00773-020-00766-x |
[11] |
ZHAO Jianhu, ZOU Yajing, ZHANG Hongmei, et al. A new method for absolute datum transfer in seafloor control network measurement[J]. Journal of Marine Science and Technology, 2016, 21(2): 216-226.
doi: 10.1007/s00773-015-0344-z |
[12] |
SUN Wenzhou, YIN Xiaodong, BAO Jingyang, et al. Semi-parametric adjustment model methods for positioning of seafloor control point[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 117-123. DOI: 10.11947/j.AGCS.2019.20180187.
doi: 10.11947/j.AGCS.2019.20180187 |
[13] | DING Shijun. Survey data modeling and semiparametric estmating[D]. Wuhan: Wuhan University, 2005. |
[14] |
KIDO M. Detecting horizontal gradient of sound speed in ocean[J]. Earth, Planets and Space, 2007, 59(8): e33-e36.
doi: 10.1186/BF03352027 |
[15] |
YOKOTA Y, ISHIKAWA T, WATANABE S I. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography[J]. Marine Geophysical Research, 2019, 40(4): 493-504.
doi: 10.1007/s11001-018-9362-7 |
[16] |
HONSHO C, KIDO M, TOMITA F, et al. Offshore postseismic deformation of the 2011 Tohoku earthquake revisited: application of an improved GPS-acoustic positioning method considering horizontal gradient of sound speed structure[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5990-6009.
doi: 10.1029/2018JB017135 |
[17] |
KIDO M, OSADA Y, FUJIMOTO H. Temporal variation of sound speed in ocean: a comparison between GPS/acoustic and in situ measurements[J]. Earth, Planets and Space, 2008, 60(3): 229-234.
doi: 10.1186/BF03352785 |
[18] | HE Li, LI Zhenglin, PENG Zhaohui, et al. Inversion for sound speed profiles in the northern of South China Sea[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 41(1): 49-57. |
[19] | LI Panfeng, YAN Zhonghui, DU Runlin, et al. Structures and seasonal variation of sound velocity profiles in the central Philippine Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 147-157. |
[20] |
LI Jia, YANG Kunde, LEI Bo, et al. Research on the temporal spatial distributions and the physical mechanisms for the sound speed profiles in north-central Indian Ocean[J]. Acta Physica Sinica, 2012, 61(8): 084301.
doi: 10.7498/aps |
[21] |
KINUGASA N, TADOKORO K, KATO T, et al. Estimation of temporal and spatial variation of sound speed in ocean from GNSS-A measurements for observation using moored buoy[J]. Progress in Earth and Planetary Science, 2020, 7(1): 1-14.
doi: 10.1186/s40645-019-0311-0 |
[22] |
YOKOTA Y, ISHIKAWA T, WATANABE S I, et al. Kilometer-scale sound speed structure that affects GNSS-A observation: case study off the kii channel[J]. Frontiers in Earth Science, 2020, 8: 331.
doi: 10.3389/feart.2020.00331 |
[23] |
FUJITA M, ISHIKAWA T, MOCHIZUKI M, et al. GPS/Acoustic seafloor geodetic observation: method of data analysis and its application[J]. Earth, Planets and Space, 2006, 58(3): 265-275.
doi: 10.1186/BF03351923 |
[24] |
NAKAMURA Y, YOKOTA Y, ISHIKAWA T, et al. Optimal transponder array and survey line configurations for GNSS-A observation evaluated by numerical simulation[J]. Frontiers in Earth Science, 2021, 9: 600993.
doi: 10.3389/feart.2021.600993 |
[25] | AGOSTON M K. Computer graphics and geometric modeling[M]. London: Springer, 2005. |
[26] |
KUANG Yingcai, LÜ Zhiping, WANG Fangchao, et al. The adaptive filtering algorithm of GNSS/acoustic joint positioning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 854-864.DOI: 10.11947/j.AGCS.2020.20190393.
doi: 10.11947/j.AGCS.2020.20190393 |
[27] |
CHEN Guanxu, LIU Yang, LIU Yanxiong, et al. Improving GNSS-acoustic positioning by optimizing the ship̓s track lines and observation combinations[J]. Journal of Geodesy, 2020, 94(6):1-14.
doi: 10.1007/s00190-019-01332-z |
[28] | JENSEN F B, KUPERMAN W A, PORTER M B, et al. Computational ocean acoustics[M]. New York: Springer New York, 2011. |
[29] |
SAKIC P, BALLU V, CRAWFORD W C, et al. Acoustic ray tracing comparisons in the context of geodetic precise off-shore positioning experiments[J]. Marine Geodesy, 2018, 41(4): 315-330.
doi: 10.1080/01490419.2018.1438322 |
[30] | FENG Shizuo, LI Fengqi, LI Shaojing. An introduction to marine science[M]. Beijing: Higher Education Press, 1999. |
[31] |
MUNK W, WUNSCH C. Ocean acoustic tomography: a scheme for large scale monitoring[J]. Deep Sea Research Part A Oceanographic Research Papers, 1979, 26(2): 123-161.
doi: 10.1016/0198-0149(79)90073-6 |
[32] | LIAO Guanghong, ZHU Xiaohua, LIN Ju, et al. Overview of the applications and observations of ocean acoustic tomography[J]. Progress in Geophysics, 2008, 23(6): 1782-1790. |
[33] |
CARRIERE O, HERMAND J P, CANDY J V. Inversion for time-evolving sound-speed field in a shallow ocean by ensemble Kalman filtering[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4): 586-602.
doi: 10.1109/JOE.2009.2033954 |
[34] |
YOKOTA Y, ISHIKAWA T. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography: GNSS-A as a sensor for detecting sound speed gradient[J]. SN Applied Sciences, 2019, 1(7): 693-705.
doi: 10.1007/s42452-019-0699-6 |
[35] | HUANG Chenfen, GERSTOFT P, HODGKISS W S. Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion[J]. The Journal of the Acoustical Society of America, 2008, 123(6):162-170. |
[36] | ZHANG Weitao, ZHANG Ren, WANG Huizan, et al. Analysis on the characteristics of sound speed in the northern South China Sea based on Argo data[J]. Marine Science Bulletin, 2013, 32(3): 275-280. |
[37] | CHAPMAN C H. Fundamentals of seismic wave propagation[M]. Cambridge: Cambridge University Press, 2004. |
[38] |
HONSHO C, KIDO M. Comprehensive analysis of traveltime data collected through GPS-acoustic observation of seafloor crustal movements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8583-8599.
doi: 10.1002/2017JB014733 |
[39] |
ZHAO Shuang, WANG Zhenjie, NIE Zhixi, et al. Investigation on total adjustment of the transducer and seafloor transponder for GNSS/acoustic precise underwater point positioning[J]. Ocean Engineering, 2021, 221: 108533.
doi: 10.1016/j.oceaneng.2020.108533 |
[40] |
ZHAO Shuang, WANG Zhenjie, He kaifei, et al. Investigation on stochastic model refinement for precise underwater positioning[J]. IEEE Journal of Oceanic Engineering, 2019, 45(4): 1482-1496.
doi: 10.1109/JOE.48 |
[41] |
ZHAO Shuang, WANG Zhenjie, He kaifei, et al. Investigation on underwater positioning stochastic model based on acoustic ray incidence angle[J]. Applied ocean research, 2018, 77(8): 69-77.
doi: 10.1016/j.apor.2018.05.011 |
[42] | YANG Yuanxi. Adaptive navigation and kinematic positioning[M]. 2nd ed. Beijing: Surveying and Mapping Press, 2017. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||