Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (1): 31-46.doi: 10.11947/j.JGGS.2023.0103
Previous Articles Next Articles
Juanjuan YU1,3(),Xiufeng HE1(),Jia XU1,Zhuang GAO1,Peng YANG1,Yuanyuan CHEN2,Jiacheng XIONG1
Received:
2022-01-07
Accepted:
2022-09-30
Online:
2023-03-20
Published:
2023-05-04
Contact:
Xiufeng HE
E-mail:yujuanjuan@hhu.edu.cn;xfhe@hhu.edu.cn
About author:
Juanjuan YU, research interests include high-resdution remote sensing data processing and application.E-mail: Supported by:
Juanjuan YU,Xiufeng HE,Jia XU,Zhuang GAO,Peng YANG,Yuanyuan CHEN,Jiacheng XIONG. An Edge-assisted, Object-oriented Random Forest Approach for Refined Extraction of Tea Plantations Using Multi-temporal Sentinel-2 and High-resolution Gaofen-2 Imagery[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 31-46.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Satellite parameters"
Satellite | Multispectral band | Resolution | Central wavelength /um |
---|---|---|---|
Sentinel-2 MultiSpectral Images (S2-MSI) | Band 1- Coastal aerosol | 60 | 0.443 |
Band 2- Blue | 10 | 0.490 | |
Band 3- Green | 10 | 0.560 | |
Band 4- Red | 10 | 0.665 | |
Band 5- Vegetation red edge | 20 | 0.705 | |
Band 6- Vegetation red edge | 20 | 0.740 | |
Band 7- Vegetation red edge | 20 | 0.783 | |
Band 8- NIR | 10 | 0.842 | |
Band 8A- Vegetation red edge | 20 | 0.865 | |
Band 9- Water vapor | 60 | 0.945 | |
Band 10- SWIR- Cirrus | 60 | 1.375 | |
Band 11- SWIR | 20 | 1.610 | |
Band 12- SWIR | 20 | 2.190 | |
GF-2 Panchromatic and MultiSpectral (PMS) | Band 1- Blue | 4 | 0.45~0.52 |
Band 2- Green | 4 | 0.52~0.59 | |
Band 3- Red | 4 | 0.63~0.69 | |
Band 4- NIR | 4 | 0.77~0.89 | |
Panchromatic | 1 | 0.45~0.90 |
Tab.2
Features extracted from multitemporal Sentinel-2 images"
Feature | Description | Equation |
---|---|---|
Spectral bands | There are 12 spectral bands in the Sentinel-2 | B1, B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12 |
Spectral indices | Normalized Difference Vegetation Index (NDVI) | NDVI= |
Modified Normalized Difference Water Index (MNDWI) | MNDWI= | |
S-2 Red-Edge Position index (S2REP) | S2REP=705+35×((((NIR+R)/2)-RE1)/(RE2-RE1))= 705+35×((((B7+B4)/2)-B5)/(B6-B5)) | |
Brightness Index2 (BI2) | BI2= | |
Texture features | Contrast | |
Dissimilarity | ||
Homogeneity | ||
Angular Second Moment (ASM) | ||
Energy | Energy= | |
Maximum probability (Max) | Max=Maxi,j(Pi,j) | |
Entropy | ||
Mean | ||
Variance | ||
Correlation | ||
NDVI time variation characteristics | σ | |
CV | CV=σ/μ |
Tab.3
Classification accuracy of different methods"
Classification method | Class | PA /(%) | UA /(%) | OA /(%) | Kappa coefficient |
---|---|---|---|---|---|
PBRF_S2 | Tea plantations | 82.35 | 97.11 | 88.93 | 0.78 |
Others | 97.00 | 81.78 | |||
PBRF_S2 (STDkp, CVkp) | Tea plantations | 83.54 | 97.44 | 89.84 | 0.80 |
Others | 97.37 | 83.20 | |||
OBRF_S2 | Tea plantations | 84.75 | 96.74 | 90.35 | 0.81 |
Others | 96.74 | 84.76 | |||
OBRF_S2 (STDkp, CVkp) | Tea plantations | 85.36 | 98.21 | 91.30 | 0.83 |
Others | 98.20 | 85.25 | |||
OBRF_GF2 | Tea plantations | 87.98 | 84.65 | 87.48 | 0.75 |
Others | 87.08 | 89.95 | |||
OBRF_S2_GF2 | Tea plantations | 92.14 | 95.42 | 94.08 | 0.88 |
Others | 95.89 | 92.93 | |||
OBRF_S2_GF2 (STDkp, CVkp) | Tea plantations | 93.32 | 96.99 | 95.38 | 0.91 |
Others | 97.29 | 93.97 |
[1] |
ZHU Jun, PAN Ziwu, WANG Hang, et al. An improved multi-temporal and multi-feature tea plantation identification method using sentinel-2 imagery[J]. Sensors, 2019, 19(9): 2087.
doi: 10.3390/s19092087 |
[2] |
HUANG Chengquan, GONG Weishu, PANG Yong. Remote sensing and forest carbon monitoring—a review of recent progress, challenges and opportunities[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 124-147. DOI: 10.11947/j.JGGS.2022.0212.
doi: 10.11947/j.JGGS.2022.0212 |
[3] |
DONG Taifeng, LIU Jiangui, QIAN Budong, et al. Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168: 236-250.
doi: 10.1016/j.isprsjprs.2020.08.003 |
[4] |
COLOMBO R, BELLINGERI D, FASOLINI D, et al. Retrieval of leaf area index in different vegetation types using high resolution satellite data[J]. Remote Sensing of Environment, 2003, 86(1): 120-131.
doi: 10.1016/S0034-4257(03)00094-4 |
[5] |
FAUZIANA F, DANOEDORO P, HERU MURTI S. Linear spectral mixture analysis of SPOT-7 for tea yield estimation in Pagilaran Estate, Batang Central Java[J]. IOP Conference Series: Earth and Environmental Science, 2016, 47: 012034.
doi: 10.1088/1755-1315/47/1/012034 |
[6] |
YANG Chenghai, EVERITT J H, MURDEN D. Evaluating high resolution SPOT 5 satellite imagery for crop identification[J]. Computers and Electronics in Agriculture, 2011, 75(2): 347-354.
doi: 10.1016/j.compag.2010.12.012 |
[7] |
ZHANG Chongyuan, MARZOUGUI A, SANKARAN S. High-resolution satellite imagery applications in crop phenotyping: an overview[J]. Computers and Electronics in Agriculture, 2020, 175: 105584.
doi: 10.1016/j.compag.2020.105584 |
[8] |
LUCAS R, ROWLANDS A, BROWN A, et al. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(3): 165-185.
doi: 10.1016/j.isprsjprs.2007.03.003 |
[9] |
ZHANG Huanxue, LI Qiangzi, LIU Jiangui, et al. Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier[J]. Geocarto International, 2018, 33(10): 1017-1035.
doi: 10.1080/10106049.2017.1333533 |
[10] |
XU Feng, LI Zhaofu, ZHANG Shuyu, et al. Mapping winter wheat with combinations of temporally aggregated Sentinel-2 and Landsat-8 data in Shandong Province, China[J]. Remote Sensing, 2020, 12(12): 2065.
doi: 10.3390/rs12122065 |
[11] |
YAO Fangfang, WANG Jida, WANG Chao, et al. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery[J]. Remote Sensing of Environment, 2019, 232: 111210.
doi: 10.1016/j.rse.2019.111210 |
[12] |
VASILAKOS C, TSEKOURAS G E, KAVROUDAKIS D. LSTM-based prediction of mediterranean vegetation dynamics using NDVI time-series data[J]. Land, 2022, 11(6): 923.
doi: 10.3390/land11060923 |
[13] |
CHEN Bangqian, XIAO Xiangming, LI Xiangping, et al. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131: 104-120.
doi: 10.1016/j.isprsjprs.2017.07.011 |
[14] |
ZHU Xiufang, XIAO Guofeng, ZHANG Dujuan, et al. Mapping abandoned farmland in China using time series MODIS NDVI[J]. Science of the Total Environment, 2021, 755: 142651.
doi: 10.1016/j.scitotenv.2020.142651 |
[15] |
SUN Chao, FAGHERAZZI S, LIU Yongxue. Classification mapping of salt marsh vegetation by flexible monthly NDVI time-series using Landsat imagery[J]. Estuarine, Coastal and Shelf Science, 2018, 213: 61-80.
doi: 10.1016/j.ecss.2018.08.007 |
[16] |
WANG Xinxin, XIAO Xiangming, ZOU Zhenhua, et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 312-326.
doi: 10.1016/j.isprsjprs.2020.03.014 |
[17] |
YANG Yingying, WU Taixia, WANG Shudong, et al. Fractional evergreen forest cover mapping by MODIS time-series FEVC-CV methods at sub-pixel scales[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 272-283.
doi: 10.1016/j.isprsjprs.2020.03.012 |
[18] |
HUANG Chong, ZHANG Chenchen, HE Yun, et al. Land cover mapping in cloud-prone tropical areas using Sentinel-2 data: integrating spectral features with NDVI temporal dynamics[J]. Remote Sensing, 2020, 12(7): 1163.
doi: 10.3390/rs12071163 |
[19] |
CHAUHAN S, DARVISHZADEH R, LU Yi, et al. Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data[J]. Remote Sensing of Environment, 2020, 243: 111804.
doi: 10.1016/j.rse.2020.111804 |
[20] |
ZHANG Weichun, LIU Hongbin, WU Wei, et al. Mapping rice paddy based on machine learning with sentinel-2 multi-temporal data: model comparison and transferability[J]. Remote Sensing, 2020, 12(10): 1620.
doi: 10.3390/rs12101620 |
[21] |
BELGIU M, CSILLIK O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis[J]. Remote Sensing of Environment, 2018, 204: 509-523.
doi: 10.1016/j.rse.2017.10.005 |
[22] |
BLASCHKE T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1): 2-16.
doi: 10.1016/j.isprsjprs.2009.06.004 |
[23] | CHEN Y, TIAN S. Comparison of pixel- and object-based image analysis for tea plantation mapping using hyperspectral Gaofen-5 and synthetic aperture radar data[J]. Journal of Applied Remote Sensing, 2020, 14(4): 1-21. |
[24] |
CAI Y, LI X, ZHANG M, et al. Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92(5): 102164.
doi: 10.1016/j.jag.2020.102164 |
[25] |
BLASCHKE T, FEIZIZADEH B, HÖLBLING D. Object-based image analysis and digital terrain analysis for locating landslides in the Urmia Lake Basin, Iran[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 4806-4817.
doi: 10.1109/JSTARS.4609443 |
[26] |
BEKTAS BALCIK F, SENEL G, GOKSEL C. Object-based classification of greenhouses using sentinel-2 MSI and SPOT-7 images: a case study from anamur (Mersin), Turkey[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2769-2777.
doi: 10.1109/JSTARS.4609443 |
[27] |
TANG Zixia, LI Mengmeng, WANG Xiaoqin. Mapping tea plantations from VHR images using OBIA and convolutional neural networks[J]. Remote Sensing, 2020, 12(18): 2935.
doi: 10.3390/rs12182935 |
[28] |
BELGIU M, DRǍGUŢ L. Random forest in remote sensing: a review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31.
doi: 10.1016/j.isprsjprs.2016.01.011 |
[29] |
MAHDIANPARI M, SALEHI B, MOHAMMADIMANESH F, et al. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 13-31.
doi: 10.1016/j.isprsjprs.2017.05.010 |
[30] |
STUMPF A, KERLE N. Object-oriented mapping of landslides using random forests[J]. Remote Sensing of Environment, 2011, 115(10): 2564-2577.
doi: 10.1016/j.rse.2011.05.013 |
[31] |
PUISSANT A, ROUGIER S, STUMPF A. Object-oriented mapping of urban trees using random forest classifiers[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26: 235-245.
doi: 10.1016/j.jag.2013.07.002 |
[32] |
CAI Yaotong, LIN Hui, ZHANG Meng. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data[J]. Advances in Space Research, 2019, 64(11): 2233-2244.
doi: 10.1016/j.asr.2019.08.042 |
[33] |
HUNG P Y. Tea forest in the making: tea production and the ambiguity of modernity on China’s southwest frontier[J]. Geoforum, 2013, 47: 178-188.
doi: 10.1016/j.geoforum.2013.01.007 |
[34] | LI Rui. The value of Asian tea culture from the perspective of integration of tea and tourism industry—a case study of Jingmai Mountain, Yunnan[C]//Proceedings of the 2nd Asia-Pacific Social Science and Modern Education Conference(SSME 2019). Shanghai:[s.n.], 2019. |
[35] |
WANG Qunming, ATKINSON P M. Spatio-temporal fusion for daily Sentinel-2 images[J]. Remote Sensing of Environment, 2018, 204: 31-42.
doi: 10.1016/j.rse.2017.10.046 |
[36] |
WANG Mi, ZHANG Zhiqi, DONG Zhipeng, et al. Stream-computing of high accuracy on-board real-time cloud detection for high resolution optical satellite imagery[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 50-59. DOI: 10.11947/j.JGGS.2019.0206.
doi: 10.11947/j.JGGS.2019.0206 |
[37] | ROUSE JR J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with ERTS[R]. Washington, DC: NASA, 1974. |
[38] |
XU Hanqiu. Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025-3033.
doi: 10.1080/01431160600589179 |
[39] | ESCADAFAL R. Remote sensing of arid soil surface color with Landsat thematic mapper[J]. Advances in Space Research, 1989, 9(1): 159-163. |
[40] | GUYOT G, BARET F. Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux[C]//Proceedings of the 4th International Colloquium “Spectral Signatures of Objects in Remote Sensing. Paris: ESA, 1988: 279-286. |
[41] |
LUO Hongxia, DAI Shengpei, LI Maofen, et al. Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery[J]. Journal of Integrative Agriculture, 2020, 19(11): 2815-2828.
doi: 10.1016/S2095-3119(20)63208-7 |
[42] |
YANG Zhi, SHAO Yun, LI Kun, et al. An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data[J]. Remote Sensing of Environment, 2017, 195: 184-201.
doi: 10.1016/j.rse.2017.04.016 |
[43] |
BOONPRONG S, CAO Chunxiang, CHEN Wei, et al. Random forest variable importance spectral indices scheme for burnt forest recovery monitoring-multilevel RF-VIMP[J]. Remote Sensing, 2018, 10(6): 807.
doi: 10.3390/rs10060807 |
[44] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324 |
[45] |
KARLSON M, GÅLFALK M, CRILL P, et al. Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models[J]. Remote Sensing of Environment, 2019, 231: 111252.
doi: 10.1016/j.rse.2019.111252 |
[46] |
NGUYEN H T T, DOAN T M, TOMPPO E, et al. Land use/land cover mapping using multitemporal sentinel-2 imagery and four classification methods—a case study from Dak Nong, Vietnam[J]. Remote Sensing, 2020, 12(9): 1367.
doi: 10.3390/rs12091367 |
[47] |
CHEN Yunhao, CHEN Qiang, JING Changfeng. Multi-resolution segmentation parameters optimization and evaluation for VHR remote sensing image based on mean NSQI and discrepancy measure[J]. Journal of Spatial Science, 2021, 66(2): 253-278.
doi: 10.1080/14498596.2019.1615011 |
[48] |
MOHAMMADIMANESH F, SALEHI B, MAHDIANPARI M, et al. Multi-temporal, multi-frequency, and multi-polarization coherence and SAR backscatter analysis of wetlands[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 142: 78-93.
doi: 10.1016/j.isprsjprs.2018.05.009 |
[49] |
MOHAMMADIMANESH F, SALEHI B, MAHDIANPARI M, et al. An efficient feature optimization for wetland mapping by synergistic use of sar intensity, interferometry, and polarimetry data[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 450-462.
doi: 10.1016/j.jag.2018.06.005 |
[50] |
MA Lei, LI Manchun, MA Xiaoxue, et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 277-293.
doi: 10.1016/j.isprsjprs.2017.06.001 |
[51] |
DRǍGUŢ L, TIEDE D, LEVICK S R. ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J]. International Journal of Geographical Information Science, 2010, 24(6): 859-871.
doi: 10.1080/13658810903174803 |
[52] |
DRǍGUŢ L, CSILLIK O, EISANK C, et al. Automated parameterisation for multi-scale image segmentation on multiple layers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88: 119-127.
doi: 10.1016/j.isprsjprs.2013.11.018 |
[53] |
HAY G J, BLASCHKE T, MARCEAU D J, et al. A comparison of three image-object methods for the multiscale analysis of landscape structure[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(5-6): 327-345.
doi: 10.1016/S0924-2716(02)00162-4 |
[54] |
MARTHA T R, KERLE N, VAN WESTEN C J, et al. Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4928-4943.
doi: 10.1109/TGRS.2011.2151866 |
[55] |
PAL M. Random forest classifier for remote sensing classification[J]. International Journal of Remote Sensing, 2005, 26(1): 217-222.
doi: 10.1080/01431160412331269698 |
[56] |
ZHAO Yi, JIANG Mi, MA Zhangfeng. Integration of SAR polarimetric features and multi-spectral data for object-based land cover classification[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 64-72. DOI: 10.11947/j.JGGS.2019.0407.
doi: 10.11947/j.JGGS.2019.0407 |
[57] |
STEHMAN S V, FOODY G M. Key issues in rigorous accuracy assessment of land cover products[J]. Remote Sensing of Environment, 2019, 231: 111199.
doi: 10.1016/j.rse.2019.05.018 |
[1] | Julien BRIANT,Huber CLAIRE,Studer MATHIAS,Lei CAO,Kunpeng YI,Yésou HERVÉ. Water Resource Monitoring Exploiting Sentinel-2 Satellite and Sentinel-2 Satellite Like Time Series; Application in Yangtze River Water Bodies [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 41-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||