[1] |
ROBINSON C, HOHMAN F, DILKINA B. A deep learning approach for population estimation from satellite imagery[C]// Proceedings of the 1st ACM SIGSPATIAL Workshop on Geospatial Humanities. Redondo Beach: ACM, 2017: 47-54.
|
[2] |
HU Wenjie, PATEL J H, ROBERT Z A, et al. Mapping missing population in rural india: a deep learning approach with satellite imagery[C]// Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. Honolulu: ACM, 2019: 353-359.
|
[3] |
MENG Yao, LI Rui, JIANG Jie, et al. Urban street scale population estimation based on building information[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1194-1200. DOI: 10.13203/j.whugis20190343.
doi: 10.13203/j.whugis20190343
|
[4] |
HEAD A, MANGUIN M, TRAN N, et al. Can human development be measured with satellite imagery?[C]// Proceedings of the Ninth International Conference on Information and Communication Technologies and Development. Lahore: ACM, 2017: 8. DOI: 10.1145/3136560.3136576.
doi: 10.1145/3136560.3136576
|
[5] |
HAN S, AHN D, PARK S, et al. Learning to score economic development from satellite imagery[C]// Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Virtual Event: ACM, 2020: 2970-2979. DOI: 10.1145/3394486.3403347.
doi: 10.1145/3394486.3403347
|
[6] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Proceedings of the 13th European Conference on Computer Vision. Zurich: Springer, 2014: 818-833.
|
[7] |
FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100. DOI: 10.11947/j.JGGS.2019.0210.
doi: 10.11947/j.JGGS.2019.0210
|
[8] |
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15. DOI: 10.11947/j.JGGS.2018.0101.
doi: 10.11947/j.JGGS.2018.0101
|
[9] |
SOWMYA D R, SHENOY P D, VENUGOPAL K R. Remote sensing satellite image processing techniques for image classification: a comprehensive survey[J]. International Journal of Computer Applications, 2017, 161(11): 24-37.
|
[10] |
JEAN N, BURKE M, XIE M, et al. Combining satellite imagery and machine learning to predict poverty[J]. Science, 2016: 353(6301), 790-794.
doi: 10.1126/science.aaf7894
pmid: 27540167
|
[11] |
WANG L, WANG S, ZHOU Y, et al. Mapping population density in China between 1990 and 2010 using remote sensing[J]. Remote sensing of environment, 2018, 210: 269-281.
doi: 10.1016/j.rse.2018.03.007
|
[12] |
ABBURU S, GOLLA S B. Satellite image classification methods and techniques: a review[J]. International journal of computer applications, 2015, 119(8).
|
[13] |
JIN T, LI Z, LI T, et al. System design and analysis for improving geometric accuracy of high-resolution optical remote sensing satellite image[J]. Journal of Astronautics, 2013, 34(8): 1159-1165.
|
[14] |
PELLETIER C, WEBB G I, PETITJEAN F. Temporal convolutional neural network for the classification of satellite image time series[J]. Remote Sensing, 2019, 11(5): 523.
doi: 10.3390/rs11050523
|
[15] |
CARLEER A P, DEBEIR O, WOLFF E. Assessment of very high spatial resolution satellite image segmentations[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(11): 1285-1294.
|
[16] |
LU D, WENG Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007, 28(5): 823-870.
doi: 10.1080/01431160600746456
|
[17] |
NATH S S, MISHRA G, KAR J, et al. A survey of image classification methods and techniques[C]// Proceedings of 2014 International Conference on Control, Instrumentation,Communication and Computational Technologies. Kanyakumari: IEEE, 2014: 554-557.
|
[18] |
PIRES DE LIMA R, MARFURT K. Convolutional neural network for remote-sensing scene classification: transfer learning analysis[J]. Remote Sensing, 2020, 12(1): 86.
doi: 10.3390/rs12010086
|
[19] |
LI P, ZHANG H, GUO Z, et al. Understanding rooftop PV panel semantic segmentation of satellite and aerial images for better using machine learning[J]. Advances in applied energy, 2021:4, 100057.
|
[20] |
NILSSON M. Estimation of forest variables using satellite image data and airborne LiDAR[D]. Umea: Swedish University of Agricultural Sciences, 1997.
|
[21] |
CHEN C, GONG W, HU Y, et al. Learning oriented region-based convolutional neural networks for building detection in satellite remote sensing images[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 42: 461.
|
[22] |
HELMER E H, RUEFENACHT B. Cloud-free satellite image mosaics with regression trees and histogram matching[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(9): 1079-1089.
|
[23] |
FU Gang, LIU Changjun, ZHOU Rong, et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote Sensing, 2017, 9(5): 498.
doi: 10.3390/rs9050498
|
[24] |
VAILAYA A, JAIN A, ZHANG H J. On image classification: city images vs. landscapes[J]. Pattern Recognition, 1998, 31(12): 1921-1935.
doi: 10.1016/S0031-3203(98)00079-X
|
[25] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Proceedings of Computer Vision-ECCV 2014: 13th European Conference. Zurich, Switzerland: Springer International Publishing, 2014:818-833.
|
[26] |
DOLLÁR P, TU Zhuowen, TAO Hai, et al. Feature mining for image classification[C]// Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007: 1-8.
|
[27] |
HA I, KIM H, PARK S, et al. Image retrieval using BIM and features from pretrained VGG network for indoor localization[J]. Building and Environment, 2018, 140: 23-31.
doi: 10.1016/j.buildenv.2018.05.026
|
[28] |
CHAIB S, YAO Hongxun, GU Yanfeng, et al. Deep feature extraction and combination for remote sensing image classification based on pre-trained CNN models[C]// Proceedings of SPIE Ninth International Conference on Digital Image Processing (ICDIP 2017). Hong Kong, China: SPIE, 2017: 104203D.
|
[29] |
SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. Computer Science, 2014.
|