Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (1): 95-107.doi: 10.11947/j.JGGS.2023.0108
Tong ZHENG1(),Peng LEI2,Jun WANG2
Received:
2022-01-17
Accepted:
2022-07-01
Online:
2023-03-20
Published:
2023-05-04
About author:
Tong ZHENG, research interests include convolutional reural network, synthetic aperture radar, inshore ship dection, etc. E-mail: Supported by:
Tong ZHENG,Peng LEI,Jun WANG. A Hybrid Features Based Detection Method for Inshore Ship Targets in SAR Imagery[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 95-107.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Hyperparameter configuration of CNN model(%)"
Cases | Configuration | Precision | Recall | FoM | F1 |
---|---|---|---|---|---|
1 | 3@3_3@4_3@3 | 52.03 | 76.63 | 44.90 | 61.98 |
2 | 3@5_3@5_3@4 | 36.75 | 86.68 | 34.79 | 51.62 |
3 | 3@7_3@6_3@3 | 43.46 | 78.53 | 38.84 | 55.95 |
4 | 3@11_3@6_3@3 | 31.36 | 89.13 | 30.20 | 46.39 |
5 | 4@3_4@4_4@3 | 56.58 | 66.58 | 44.06 | 61.17 |
6 | 6@3_6@4_6@3 | 57.46 | 63.86 | 43.36 | 60.49 |
7 | 8@3_8@4_8@3 | 54.64 | 70.38 | 44.43 | 61.52 |
8 | 16@3_16@4_16@3 | 42.84 | 89.40 | 40.77 | 57.92 |
9 | 3@7_3@6_3@3_3@2 | 28.23 | 93.21 | 27.66 | 43.44 |
10 | 3@11_3@6_3@3_3@2 | 31.57 | 92.39 | 30.77 | 47.06 |
11 | 3@11_3@8_3@3_3@2 | 28.87 | 93.75 | 28.33 | 44.15 |
Tab.2
Detection results comparison"
(a) Subset of HRSID(%) | ||||
Results | Precision | Recall | FoM | F1 |
---|---|---|---|---|
Pre+CFAR | 29.77 | 31.74 | 30.20 | 30.72 |
Pre+CNN | 25.76 | 26.12 | 24.22 | 25.94 |
Faster R-CNN | 27.12 | 25.05 | 23.21 | 26.04 |
Proposed | 35.53 | 32.16 | 31.88 | 33.76 | (b) Subset of SSDD(%) |
Results | Precision | Recall | FoM | F1 |
Pre+CFAR | 30.77 | 29.74 | 28.22 | 30.25 |
Pre+CNN | 29.12 | 30.45 | 27.18 | 30.11 |
Faster R-CNN | 26.50 | 28.05 | 25.21 | 27.25 |
Proposed | 31.22 | 30.12 | 29.17 | 30.66 |
[1] |
YU Lei, WU Haoyu, ZHONG Zhi, et al. TWC-Net: a SAR ship detection using two-way convolution and multiscale feature mapping[J]. Remote Sensing, 2021, 13(13): 2558.
doi: 10.3390/rs13132558 |
[2] |
CONG Runmin, HAN Ping, LI Chongyi, et al. Manmade target extraction based on multistage decision and its application for change detection in polarimetric synthetic aperture radar image[J]. Journal of Electronic Imaging, 2016, 25(5): 053017.
doi: 10.1117/1.JEI.25.5.053017 |
[3] |
LINDAHL P A, GREEN D H, BREDARIOL G, et al. Shipboard fault detection through nonintrusive load monitoring: a case study[J]. IEEE Sensors Journal, 2018, 18(21): 8986-8995.
doi: 10.1109/JSEN.2018.2869115 |
[4] |
LIANG Yi, SUN Kun, ZENG Yugui, et al. An adaptive hierarchical detection method for ship targets in high-resolution SAR images[J]. Remote Sensing, 2020, 12(2): 303.
doi: 10.3390/rs12020303 |
[5] | AOYAMA T. Monitoring of marine debris in the sea of Japan using multi-spectral satellite images[C]//Proceedings of SPIE 9261, Ocean Remote Sensing and Monitoring from Space. Beijing, China: SPIE, 2014: 92611E. |
[6] | DONG Mingtao, CUI Yuanhao, JING Xiaojun, et al. End-to-end target detection and classification with data augmentation in SAR images[C]//Proceedings of International Conference on Computational Electromagnetics. Shanghai, China: IEEE, 2019: 1-3. |
[7] | AN Quanzhi, PAN Zongxu, LIU Lei, et al. DRBox-v2: an improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience andRemote Sensing, 2019, 57(11): 8333-8349. |
[8] |
YANG Rong, PAN Zhenru, JIA Xiaoxue, et al. A novel CNN-based detector for ship detection based on rotatable bounding box in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1938-1958.
doi: 10.1109/JSTARS.4609443 |
[9] | CHEN Yuan, YU Jie, XU Yang. SAR ship target detection for SSDv2 under complex backgrounds[C]//Proceedings of 2020 International Conference on Computer Vision, Image and Deep Learning. Chongqing, China: IEEE, 2020: 560-565. |
[10] |
ZHANG Tianwen, ZHANG Xiaoling, KE Xiao. Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771.
doi: 10.3390/rs13142771 |
[11] |
ZHAO Yan, ZHAO Lingjun, XIONG Boli, et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2738-2756.
doi: 10.1109/JSTARS.4609443 |
[12] | KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]//Proceedings of 2017 International Workshop on Remote Sensing with Intelligent Processing. Shanghai, China: IEEE, 2017: 1-4. |
[13] | LI Yiding, ZHANG Shunsheng, WANG Wenqin. A lightweight Faster R-CNN for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4006105. |
[14] |
WU Zitong, HOU Biao, REN Bo, et al. A deep detection network based on interaction of instance segmentation and object detection for SAR images[J]. Remote Sensing, 2021, 13(13): 2582.
doi: 10.3390/rs13132582 |
[15] | HOU Shilong, MA Xiaorui, WANG Xinrong, et al. SAR image ship detection based on scene interpretation[C]//Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, HI: IEEE, 2020: 2863-2866. |
[16] | ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. Balance scene learning mechanism for offshore and inshore ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4004905. |
[17] | FU Xiaoya, WANG Zhaocheng. Fast ship detection method for SAR images in the inshore region[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium. Brussels, Belgium: IEEE, 2021: 3569-3572. |
[18] | MIAO Tian, ZENG Hongcheng, WANG He, et al. Inshore ship detection in SAR images via an improved SSD model with wavelet decomposition[C]//Proceedings of 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Bali, Indonesia: IEEE, 2021: 1-5. |
[19] | FU Qiang, CHEN Jie, YANG Wei, et al. Nearshore ship detection on SAR image based on Yolov5[C]//Proceedings of 2021 2nd China International SAR Symposium (CISS). Shanghai, China: IEEE, 2021: 1-4. |
[20] | NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel: Omnipress, 2010: 807-814. |
[21] | OPPENHEIM A V, SCHAFER R W. Discrete-time signal processing[M]. 3rd ed. Upper Saddle River, NJ: Pearson, 2010. |
[22] | SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: high-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852-862. |
[23] | SUN Chenglu. Ship target detection and discrimination based on SAR image[D]. Xi’an: Xidian University, 2017. |
[24] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man,and Cybernetics, 1979, 9(1): 62-66.
doi: 10.1109/TSMC.1979.4310076 |
[25] | NEUBECK A,VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China: IEEE, 2006: 850-855. |
[26] |
SHEIKH Y, SHAH M. Bayesian modeling of dynamic scenes for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1778-1792.
pmid: 16285376 |
[27] |
HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: a dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195-208.
doi: 10.1109/JSTARS.4609443 |
[28] | HOU Xiyue, AO Wei, SONG Qian, et al. FUSAR-Ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition[J]. Science ChinaInformation Sciences, 2020, 63(4): 140303. |
[29] | LI Jianwei, QU Changwen, SHAO Jiaqi. Ship detection in SAR images based on an improved Faster R-CNN[C]//Proceedings of 2017 SAR in Big Data Era:Models, Methods and Applications. Beijing, China: IEEE, 2017: 1-6. |
[30] |
ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR Ship Detection Dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690.
doi: 10.3390/rs13183690 |
[31] |
WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765.
doi: 10.3390/rs11070765 |
[32] |
WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254.
doi: 10.1109/Access.6287639 |
[33] |
ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. LS-SSDD-v1.0: a deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images[J]. Remote Sensing, 2020, 12(18): 2997.
doi: 10.3390/rs12182997 |
[34] | Copernicus Open Access Hub[EB/OL]. [2018-12-24]. https://scihub.copernicus.eu/. |
[35] | Australian Government. AMSA online service[EB/OL]. [2018-11-19]. http://www.operations.amsa.gov.au/. |
[36] |
JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881-20892.
doi: 10.1109/ACCESS.2018.2825376 |
[37] |
PAES R L, LORENZZETTI J A, GHERARDI D F M. Ship detection using TerraSAR-X images in the Campos Basin (Brazil)[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 545-548.
doi: 10.1109/LGRS.2010.2041322 |
[38] | REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015: 91-99. |
[1] | Wu ZHU,Yang LEI,Quan SUN. Detection, Estimation and Compensation of Ionospheric Effect on SAR Interferogram Using Azimuth Shift [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 14-24. |
[2] | Yanjun WANG,Shaochun LI,Mengjie WANG,Yunhao LIN. A Simple Deep Learning Network for Classification of 3D Mobile LiDAR Point Clouds [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 49-59. |
[3] | Yi ZHAO,Mi JIANG,Zhangfeng MA. Integration of SAR Polarimetric Features and Multi-spectral Data for Object-Based Land Cover Classification [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||