[1] |
ROGERS A E E, INGALLS R P. Venus: Mapping the surface reflectivity by radar interferometry[J]. Science, 1969, 165(3895): 797-799. DOI: 10.1126/SCIENCE.165.3895.797.
doi: 10.1126/SCIENCE.165.3895.797
|
[2] |
ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4993-4999. DOI: 10.1029/JB091IB05P04993.
doi: 10.1029/JB091IB05P04993
|
[3] |
VAN ZYL J J. The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography[J]. Acta Astronautica, 2001, 48(5-12): 559-565. DOI: 10.1016/S0094-5765(01)00020-0.
doi: 10.1016/S0094-5765(01)00020-0
|
[4] |
MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142. DOI: 10.1038/364138A0.
doi: 10.1038/364138A0
|
[5] |
MASSONNET D, FEIGL K, ROSSI M, et al. Radar interferometric mapping of deformation in the year after the Landers earthquake[J]. Nature, 1994, 369(6477): 227-230. DOI: 10.1038/369227a0.
doi: 10.1038/369227a0
|
[6] |
MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna monitored by spaceborne radar interferometry[J]. Nature, 1995, 375(6532): 567-570. DOI: 10.1038/375567A0.
doi: 10.1038/375567A0
|
[7] |
ROSEN P, WERNER C, FIELDING E, et al. Aseismic creep along the San Andreas Fault northwest of Parkfield, CA measured by radar interferometry[J]. Geophysical Research Letters, 1998, 25(6): 825-828. DOI: 10.1029/98GL50495.
doi: 10.1029/98GL50495
|
[8] |
CHEN Jie, QUEGAN S. Improved estimators of Faraday rotation in spaceborne polarimetric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 846-850. DOI: 10.1109/LGRS.2010.2047002.
doi: 10.1109/LGRS.2010.2047002
|
[9] |
FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20. DOI: 10.1109/36.898661.
doi: 10.1109/36.898661
|
[10] |
HOOPER A, ZEBKER H, SEGALL P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23): L23611. DOI: 10.1029/2004GL021737.
doi: 10.1029/2004GL021737
|
[11] |
BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. DOI: 10.1109/TGRS.2002.803792.
doi: 10.1109/TGRS.2002.803792
|
[12] |
FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470. DOI: 10.1109/TGRS.2011.2124465.
doi: 10.1109/TGRS.2011.2124465
|
[13] |
BELL J W, AMELUNG F, FERRETTI A, et al. Monitoring aquifer-system response to groundwater pumping and artificial recharge[J]. First Break, 2008, 26(8): 51-57. DOI: 10.3997/1365-2397.26.8.28509.
doi: 10.3997/1365-2397.26.8.28509
|
[14] |
MEYER F. A review of ionospheric effects in low-frequency SAR-Signals, correction methods, and performance requirements[C]// Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 2010: 29-32. DOI: 10.1109/IGARSS.2010.5654258.
doi: 10.1109/IGARSS.2010.5654258
|
[15] |
KIM Y, VAN ZYL J. Ionospheric effects on polarimetric and interferometric space-borne SAR[C]// Proceedings of Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Seattle, WA, USA: IEEE, 1998: 472-474. DOI: 10.1109/igarss.1998.702943.
doi: 10.1109/igarss.1998.702943
|
[16] |
XIAO Ruya, JIANG Mi, LI Zhenhong, et al. New insights into the 2020 Sardoba dam failure in Uzbekistan from Earth observation[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 107: 102705. DOI: 10.1016/J.JAG.2022.102705.
doi: 10.1016/J.JAG.2022.102705
|
[17] |
HE Yufang, ZHU Wu, LEI Yang, et al. A comparative study of ionospheric correction on SAR interferometry—a case study of L’Aquila Earthquake[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 5-13. DOI: 10.11947/j.JGGS.2022.0102.
doi: 10.11947/j.JGGS.2022.0102
|
[18] |
ZHU Wu, LEI Yang, SUN Quan . Detection, estimation and compensation of ionospheric effect on SAR interferogram using azimuth shift[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 14-24. DOI: 10.11947/j.JGGS.2022.0103.
doi: 10.11947/j.JGGS.2022.0103
|
[19] |
XU Bing, LIU Liqun, LI Zhiwei, et al. Design bistatic interferometric DEM generation algorithm and its theoretical accuracy analysis for LuTan-1 satellites[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 25-38. DOI: 10.11947/j.JGGS.2022.0104.
doi: 10.11947/j.JGGS.2022.0104
|
[20] |
LI Zhenhong. Locating the small 1999 Frenchman Flat, Nevada Earthquake with InSAR stacking[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 39-49. DOI: 10.11947/j.JGGS.2022.0105.
doi: 10.11947/j.JGGS.2022.0105
|
[21] |
SONG Chuang, YU Chen, MELDEBEKOVA Gauhar, et al. Normal fault slips of the March 2021 Greece Earthquake sequence from InSAR observations[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 50-59. DOI: 10.11947/j.JGGS.2022.0106.
doi: 10.11947/j.JGGS.2022.0106
|
[22] |
ZHOU Lyu, ZHAO Yizhan, ZHU Zilin, et al. Spatial and temporal evolution of surface subsidence in Tianjin from 2015 to 2020 based on SBAS-InSAR technology[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 60-72. DOI: 10.11947/j.JGGS.2022.0107.
doi: 10.11947/j.JGGS.2022.0107
|