Journal of Geodesy and Geoinformation Science ›› 2018, Vol. 1 ›› Issue (1): 1-15.doi: 10.11947/j.JGGS.2018.0101
Received:
2017-12-01
Accepted:
2018-03-01
Online:
2018-12-20
Published:
2019-11-20
About author:
Jianya GONG(1957—), male, PhD, professor, academician of the Chinese Academy of Science, majors in geo-informatics and photogrammetry.E-mail: gongjy@whu.edu.cn
Supported by:
Jianya GONG,Shunping JI. Photogrammetry and Deep Learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.3
A comparison of different methods on test sample and pixelwise classification"
Test acc Classification acc | DATASET Ⅰ | |||||
---|---|---|---|---|---|---|
2D CNN | 3D CNN | SVM | KNN | PCA+KNN | ||
OA | 0.938 | 0.943 | 0.935 | 0.924 | 0.9215 | |
OA | 0.935 | 0.939 | 0.932 | 0.927 | 0.9277 | |
Test acc Classification acc | DATASET Ⅱ | |||||
2D CNN | 3D CNN | SVM | KNN | PCA+KNN | ||
OA | 0.961 | 0.973 | 0.785 | 0.764 | 0.745 | |
OA | 0.923 | 0.932 | 0.896 | 0.889 | 0.845 |
[1] | GONG Jianya, JI Shunping . From Photogrammetry to Computer Vision[J]. Geomatics and Information Science of Wuhan University, 2017,42(11):1518-1522. |
[2] |
BOYLE W S, SMITH G E . Charge Coupled Semiconductor Devices[J]. The Bell System Technical Journal, 1970,49(4):587-593. DOI: 10.1002/bltj.1970.49.issue-4
doi: 10.1002/bltj.1970.49.issue-4 |
[3] | ASHBY W R . An Introduction to Cybernetics[M]. London: Chapman & Hall Ltd, 1961. |
[4] |
FODOR J A, PYLYSHYN Z W . Connectionism and Cognitive Architecture:A Critical Analysis[J]. Cognition, 1988,28(1-2):3-71. DOI: 10.1016/0010-0277(88)90031-5.
doi: 10.1016/0010-0277(88)90031-5 |
[5] |
HINTON G E, OSINDERO S, TEH Y W . A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006,18(7):1527-1554. DOI: 10.1162/neco.2006.18.7.1527.
doi: 10.1162/neco.2006.18.7.1527 |
[6] |
SUYKENS J A K, VANDERWALLE J . Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters, 1999,9(3):293-300. DOI: 10.1023/A:1018628609742.
doi: 10.1023/A:1018628609742 |
[7] | KOLLER D, FRIEDMAN N. Probabilistic Graphical Models:Principles and Techniques[M]. Cambridge: MIT Press, 2009. |
[8] | BENGIO Y, LAMBLIN P, POPOVICI D , et al. Greedy Layer-wise Training of Deep Networks [C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Canada: ACM, 2006: 153-160. |
[9] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E . Imagenet Classification with Deep Convolutional Neural Networks [C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2012: 1097-1105. |
[10] | MEHTA P, SCHWAB D J . An Exact Mapping between the Variational Renormalization Group and Deep Learning[J]. arXiv Preprint arXiv: 1410. 3831, 2014. |
[11] | TISHBY N, PEREIRA F C, BIALEK W . The Information Bottleneck Method[J]. arXiv Preprint arXiv: physics/0004057, 2000. |
[12] |
HINTON G, DENG Li, YU Dong , et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition:The Shared Views of Four Research Groups[J]. IEEE Signal Processing Magazine, 2012,29(6):82-97. DOI: 10.1109/MSP.2012.2205597.
doi: 10.1109/MSP.2012.2205597 |
[13] |
LECUN Y, BOSER B, DENKER J S , et al. Backpropagation Applied to Handwritten Zip Code Recognition[J]. Neural Computation, 1989,1(4):541-551. DOI: 10.1162/neco.1989.1.4.541.
doi: 10.1162/neco.1989.1.4.541 |
[14] | KENDALL A, GRIMES M, CIPOLLA R . Posenet: A Convolutional Network for Real-time 6-dof Camera Relocalization [C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 2938-2946. |
[15] | KITTI. The KITTI Vision Benchmark Suite[DB/OL].[2018-03-01]. . |
[16] |
BENGIO Y, COURVILLE A, VINCENT P . Representation Learning:A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(8):1798-1828. DOI: 10.1109/TPAMI.2013.50.
doi: 10.1109/TPAMI.2013.50 |
[17] | NG A . Sparse Autoencoder[J]. CS294A Lecture Notes, 2011,72(2011):1-19. |
[18] |
SANGER T D . Optimal Unsupervised Learning in A Single-layer Linear Feedforward Neural Network[J]. Neural Networks, 1989,2(6):459-473. DOI: 10.1016/0893-6080(89)90044-0.
doi: 10.1016/0893-6080(89)90044-0 |
[19] | RUCK D W, ROGERS S K, KABRISKY M , et al. The Multilayer Perceptron as an Approximation to A Bayes Optimal Discriminant Function[J]. IEEE Transactions on Neural Networks, 1990,1(4):296-298. DOI: 10.1109/72.80266. |
[20] | MIKOLOV T, KARAFIÁT M, BURGET L , et al. Recurrent Neural Network Based Language Model [C]//Proceedings of the 11th Annual Conference of the International Speech Communication Association.Makuhari, Chiba, Japan: International Speech Communication Association, 2010,2:3. |
[21] | MINSKY M L, PAPERT S A. Perceptrons[M]. Cambridge: MIT Press, 1969. |
[22] | NAIR V, HINTON G E . Rectified Linear Units Improve Restricted Boltzmann Machines [C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: ACM, 2010: 807-814. |
[23] |
SHORE J, JOHNSON R . Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-entropy[J]. IEEE Transactions on Information Theory, 1980,26(1):26-37.DOI: 10.1109/TIT.1980.1056144.
doi: 10.1109/TIT.1980.1056144 |
[24] | MORÉ JJ . The Levenberg-Marquardt Algorithm: Implementation and Theory[M]//WATSON G A. Numerical Analysis. Berlin, Heidelberg: Springer, 1978: 105-116. |
[25] | LE CUN Y, BOSER B E, DENKER J S , et al. Handwritten Digit Recognition with a Back-propagation Network[M]//TOURETZKY D S. Advances in Neural Information Processing Systems. San Francisco, CA: Morgan Kaufmann Publishers Inc., 1990: 396-404. |
[26] | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning[M]. Cambridge, Massachusetts: MIT Press, 2016. |
[27] | HORN B. Robot Vision[M]. Cambridge: MIT Press, 1986. |
[28] | GRAHAM B . Fractional Max-pooling[J]. arXiv Preprint arXiv: 1412. 6071, 2014. |
[29] | ZEILER M D, FERGUS R . Visualizing and UnderstandingConvolutional Networks [C]//European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 818-833. |
[30] | SZEGEDY C, LIU W, JIA Y , et al. Going Deeper with Convolutions[J]. arXiv Preprint arXiv: 1409. 4842, 2014. |
[31] | SIMONYAN K, ZISSERMAN A . Very Deep Convolutional Networks for Large-scale Image Recognition[J]. arXiv Preprint arXiv: 1409. 1556, 2014. |
[32] | HEKaiming, ZHANG Xianyu, REN Shaoqing , et al. Deep Residual Learning for Image Recognition [C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 770-778. |
[33] | KENDALL A, CIPOLLA R . Modelling Uncertainty in Deep Learning for Camera Relocalization [C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016: 4762-4769. |
[34] | ŽBONTAR J, LECUN Y . Computing the Stereo Matching Cost with a Convolutional Neural Network [C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 1592-1599. |
[35] | KENDALL A, MARTIROSYAN H, DASGUPTA S , et al. End-to-end Learning of Geometry and Context for Deep Stereo Regression [C]//Proceedings of the IEEE Conference on Computer Vision. Venice, Italy: IEEE, 2017: 66-75. |
[36] | SEKI A, POLLEFEYS M . SGM-Nets: Semi-global Matching with Neural Networks [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI: IEEE, 2017: 21-26. |
[37] | MAYER N, ILG E, HÄUSSER P , et al. A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation [C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 4040-4048. |
[38] | LUO Wenjie, SCHWING A G, URTASUN R . Efficient Deep Learning for Stereo Matching [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 5695-5703. |
[39] | MARR D . Vision:A Computational Investigation into the Human Representation and Processing of Visual Information[M]. San Francisco: W.H.Freeman and Company, 1982. |
[40] |
CHENG Guangliang, WANG Ying, XU Shibiao , et al. Automatic Road Detection and Centerline Extraction via Cascaded End-to-end Convolutional Neural Network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(6):3322-3337. DOI: 10.1109/TGRS.2017.2669341.
doi: 10.1109/TGRS.2017.2669341 |
[41] | LIPeikang, ZANG Yu, WANG Cheng , et al. Road Network Extraction via Deep Learning and Line Integral Convolution [C]//Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China: IEEE, 2016: 1599-1602. |
[42] | MNIH V, HINTON G E . Learning to Detect Roads in High-resolution Aerial Images [C]//Proceedings of the 11th European Conference on Computer Vision.Heraklion, Crete, Greece: Springer, 2010: 210-223. |
[43] |
WANG Jun, SONG Jingwei, CHEN Mingquan , et al. Road Network Extraction:A Neural-dynamic Framework Based on Deep Learning and a Finite State Machine[J]. International Journal of Remote Sensing, 2015,36(12):3144-3169. DOI: 10.1080/01431161.2015.1054049.
doi: 10.1080/01431161.2015.1054049 |
[44] |
PANBOONYUEN T, JITKAJORNWANICH K, LAWAWIROJWONG S , et al. Road Segmentation of Remotely-sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and Conditional Random Fields[J]. Remote Sensing, 2017,9(7):680. DOI: 10.3390/rs9070680.
doi: 10.3390/rs9070680 |
[45] | VAKALOPOULOU M, KARANTZALOS K, KOMODAKIS N , et al. Building Detection in Very High Resolution Multispectral Data with Deep Learning Features [C]//Proceedings of the IEEE Conference on Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy: IEEE, 2015: 1873-1876. |
[46] |
KUSSUL N, LAVRENIUK M, SKAKUN S , et al. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):778-782. DOI: 10.1109/LGRS.2017.2681128.
doi: 10.1109/LGRS.2017.2681128 |
[47] | CASTELLUCCIO M, POGGI G, SANSONE C , et al. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks[J]. arXiv Preprint arXiv: 1508. 00092, 2015. |
[48] |
ZHANG Liangpei, ZHANG Lefei, DU Bo . Deep Learning for Remote Sensing Data:A Technical Tutorial on the State of the Art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016,4(2):22-40. DOI: 10.1109/MGRS.2016.2540798.
doi: 10.1109/MGRS.2016.2540798 |
[1] | Ting On CHAN,Wei LANG,Tingting CHEN,Zhiquan LIU,Qianying ZHAO,Chuyao LIAO,Lupan ZHANG. A New Photogrammetric Inspection Method for National Flags with Pentagrams [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 34-45. |
[2] | Kexian WANG,Shunyi ZHENG,Rui LI,Li GUI. A Deep Double-Channel Dense Network for Hyperspectral Image Classification [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. |
[3] | Yanjun WANG,Shaochun LI,Mengjie WANG,Yunhao LIN. A Simple Deep Learning Network for Classification of 3D Mobile LiDAR Point Clouds [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 49-59. |
[4] | Long SUN, Tao WU, Guangcai SUN, Dazheng FENG, Lieshu TONG, Mengdao XING. Object Detection Research of SAR Image Using Improved Faster Region-Based Convolutional Neural Network [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28. |
[5] | Hao HE,Shuyang WANG,Shicheng WANG,Dongfang YANG,Xing LIU. A Road Extraction Method for Remote Sensing Image Based on Encoder-Decoder Network [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25. |
[6] | Mi WANG,Zhiqi ZHANG,Zhipeng DONG,Shuying JIN,Hongbo SU. Stream-computing of High Accuracy On-board Real-time Cloud Detection for High Resolution Optical Satellite Imagery [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 50-59. |
[7] | Shoujiang ZHAO,Fan LIU,Peng YANG,Hongying ZHAO,Anand ASUNDI,Lei YAN,Haimeng ZHAO. Microlens Light Field Imaging Method Based on Bionic Vision and 3-3 Dimensional Information Transforming [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 70-78. |
[8] | Dazhao FAN,Yang DONG,Yongsheng ZHANG. Satellite Image Matching Method Based on Deep Convolutional Neural Network [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100. |
[9] | Fei ZHAO,Qingyun DU,Fu REN,Guizhi WANG. Syntactic Characteristics and a Smart Construction Mechanism for Thematic Map Symbols [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 37-48. |
[10] | Zongjian LIN,Feifei XIE,Guozhong SU. Accuracy Analysis of Low Altitude Photogrammetry with Wide-angle Camera [J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 30-38. |
[11] | Lei YAN,Ruihua ZHANG,Yanbiao SUN. A Preliminary Study on the Theory of Polar Coordinates Digital Photogrammetry and the Coordinate System of Spatial Information [J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 61-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||