Journal of Geodesy and Geoinformation Science ›› 2020, Vol. 3 ›› Issue (2): 16-25.doi: 10.11947/j.JGGS.2020.0202
Previous Articles Next Articles
Hao HE1,Shuyang WANG2,Shicheng WANG1(),Dongfang YANG1,Xing LIU1
Received:
2019-07-25
Accepted:
2020-01-25
Online:
2020-06-20
Published:
2020-07-08
Contact:
Shicheng WANG
E-mail:yelvlanshu@163.com
About author:
Hao HE(1991—), male, PhD candidate, majors in deep learning and computer vision filed.E?mail: hehao209@126.com
Supported by:
Hao HE,Shuyang WANG,Shicheng WANG,Dongfang YANG,Xing LIU. A Road Extraction Method for Remote Sensing Image Based on Encoder-Decoder Network[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
The experimental results of road extraction in different methods"
Recall | Precision | F1-score | |
---|---|---|---|
U-net[ | 0.632 | 0.541 | 0.545 |
RSRCNN[ | 0.729 | 0.606 | 0.662 |
ELU-SegNet-R[ | 0.847 | 0.780 | 0.812 |
Our proposed method (network only) | 0.831 | 0.814 | 0.822 |
Our proposed method (network+loss function) | 0.839 | 0.825 | 0.829 |
[1] |
WU Liang, HU Yunan. A survey of automatic road extraction from remote sensing image[J]. Acta Automatica Sinica, 2010,36(7):912-922.
doi: 10.3724/SP.J.1004.2010.00912 |
[2] |
ZHOU Y T, VENKATESWAR V, CHELLAPPA R. Edge detection and linear feature extraction using a 2-D random field model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(1):84-95.
doi: 10.1109/34.23115 |
[3] | STEGER C, GLOCK C, ECKSTEIN W, et al. Model-based road extraction from images [C]//Proceedings of Automatic Extraction of Man-Made Objects from Aerial and Space Images. Basel, Schweiz: Springer, 1995: 275-284. |
[4] |
STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(2):113-125.
doi: 10.1109/34.659930 |
[5] |
TUPIN F, MAITRE H, MANGIN J F, et al. Detection of linear features in SAR images: application to road network extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(2):434-453.
doi: 10.1109/36.662728 |
[6] |
SHI Wenzhong, ZHU Changqing. The line segment match method for extracting road network from high-resolution satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(2):511-514.
doi: 10.1109/36.992826 |
[7] |
HU Jiuxiang, RAZDAN A, FEMIANI J C, et al. Road network extraction and intersection detection from aerial images by tracking road footprints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(12):4144-4157.
doi: 10.1109/TGRS.2007.906107 |
[8] | CHRISTOPHE E, INGLADA J. Robust road extraction for high resolution satellite images [C]//Proceedings of 2007 IEEE International Conference on Image Processing. San Antonio, TX: IEEE, 2007,5:437-440. |
[9] |
POULLIS C, YOU Suya. Delineation and geometric modeling of road networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(2):165-181.
doi: 10.1016/j.isprsjprs.2009.10.004 |
[10] | FU Zhongliang, YANG Yuanwei, GAO Xianjun, et al. An optimization algorithm for multi-characteristics road network matching[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(5):608-615. DOI: 10.11947/j.AGCS.2016.20150388. |
[11] | MNIH V, HINTON G E. Learning to detect roads in high-resolution aerial images [C]//Proceedings of the 11th European Conference on Computer Vision. Berlin: Springer, 2010: 210-223. |
[12] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH: IEEE, 2014: 580-587. |
[13] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego: [s.n.], 2015. |
[14] | SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions [C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston, MA: IEEE, 2015: 1-9. |
[15] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(4):640-651.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717 |
[16] | NOH H, HONG S, GAN B. Learning deconvolution network for semantic segmentation [C]//Proceedings of 2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: IEEE, 2015: 1520-1528. |
[17] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 |
[18] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]//Proceedings of Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015, 234-241. |
[19] | MNIH V, HINTON G E. Learning to label aerial images from noisy data [C]//Proceedings of the 29th International Conference on Machine Learning. Edinburgh, Scotland: ACM, 2012: 567-574. |
[20] | MNIH V. Machine learning for aerial image labeling[D]. Toronto: University of Toronto, 2013. |
[21] |
WANG Jun, SONG Jingwei, CHEN Mingquan, et al. Road network extraction: a neural-dynamic framework based on deep learning and a finite state machine[J]. International Journal of Remote Sensing, 2015,36(12):3144-3169.
doi: 10.1080/01431161.2015.1054049 |
[22] |
WEI Yanan, WANG Zulin, XU Mai. Road structure refined CNN for road extraction in aerial image[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(5):709-713.
doi: 10.1109/LGRS.2017.2672734 |
[23] | PANBOONYUEN T, VATEEKUL P, JITKAJORNWANICH K, et al. An enhanced deep convolutional Encoder-Decoder network for road segmentation on aerial imagery [C]//Proceedings of Recent Advances in Information and Communication Technology 2017. Bangkok: Springer, 2017: 191-201. |
[24] | CLEVERT D A, UNTERTHINER T, HZOCHREITER S. Fast and accurate deep network learning by exponential linear units(ELUs) [C]//Proceedings of International Conference on Learning Representations. San Juan: [s.n.], 2016. |
[25] |
CHENG Guangliang, WANG Ying, XU Shibiao, et al. Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(6):3322-3337.
doi: 10.1109/TGRS.2017.2669341 |
[26] | KINGMA D P, BA J L. ADAM: a method for stochastic optimization [C]//Proceedings of International Conference on Learning Representations. San Diego: [s.n.], 2015. |
[27] | WIEDEMANN C. External evaluation of road networks[J]. Proceedings of the ISPRS Workshop on Photogrammetric Image Analysis, Munich, Germany, 2003,34(3):93-98. |
[28] | WEGNER J D, MONTOYA-ZEGARRA J A, SCHINDLER K. A higher-order CRF model for road network extraction [C]//Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013: 1698-1705. |
[29] | ZHONG Zilong, LI J, CUI Weihong, et al. Fully convolutional networks for building and road extraction: preliminary results [C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE, 2016: 1591-1594. |
[1] | Kseniia SERGEEVA,Hui LIN. The Extent and Effectiveness of Protected Areas in the Russian Federation [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 75-84. |
[2] | Kexian WANG,Shunyi ZHENG,Rui LI,Li GUI. A Deep Double-Channel Dense Network for Hyperspectral Image Classification [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. |
[3] | Yanjun WANG,Shaochun LI,Mengjie WANG,Yunhao LIN. A Simple Deep Learning Network for Classification of 3D Mobile LiDAR Point Clouds [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 49-59. |
[4] | Hartmut BOESCH,Yi LIU,Paul I PALMER,Johanna TAMMINEN,Jasdeep S ANAND,Zhaonan CAI,Ke CHE,Huilin CHEN,Xi CHEN,Liang FENG,Janne HAKKARAINEN,Pauli HEIKKINEN,Nikoleta KALAITZI,Rigel KIVI,Robert PARKER,Peter SOMKUTI,Jing WANG,Alex WEBB,Dongxu YANG,Lu YAO,You YI. Monitoring Greenhouses Gases over China Using Space-Based Observations [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 14-24. |
[5] | Long SUN, Tao WU, Guangcai SUN, Dazheng FENG, Lieshu TONG, Mengdao XING. Object Detection Research of SAR Image Using Improved Faster Region-Based Convolutional Neural Network [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28. |
[6] | Zongcheng ZUO, Wen ZHANG, Dongying ZHANG. A Remote Sensing Image Semantic Segmentation Method by Combining Deformable Convolution with Conditional Random Fields [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 39-49. |
[7] | Wenjie LIN,Yu LI,Quanhua ZHAO. High-resolution Remote Sensing Image Segmentation Using Minimum Spanning Tree Tessellation and RHMRF-FCM Algorithm [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 52-63. |
[8] | Yuchao DAI,Jing ZHANG,Mingyi HE,Fatih PORIKLI,Bowen LIU. Salient Object Detection from Multi-spectral Remote Sensing Images with Deep Residual Network [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 101-110. |
[9] | Yun ZHANG. Smart Photogrammetric and Remote Sensing Image Processing for Very High Resolution Optical Images— Examples from the CRC-AGIP Lab at UNB [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 17-26. |
[10] | Dazhao FAN,Yang DONG,Yongsheng ZHANG. Satellite Image Matching Method Based on Deep Convolutional Neural Network [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100. |
[11] | Jianya GONG,Shunping JI. Photogrammetry and Deep Learning [J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||