Journal of Geodesy and Geoinformation Science ›› 2019, Vol. 2 ›› Issue (2): 90-100.doi: 10.11947/j.JGGS.2019.0210
Previous Articles Next Articles
Dazhao FAN,Yang DONG,Yongsheng ZHANG
Received:
2018-12-05
Accepted:
2019-03-20
Online:
2019-06-20
Published:
2020-03-20
About author:
Dazhao FAN(1973—), male, PhD, professor, majors in digital photogrammetry.E-mail: fdzcehui@163.com
Supported by:
Dazhao FAN,Yang DONG,Yongsheng ZHANG. Satellite Image Matching Method Based on Deep Convolutional Neural Network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Information on experimental data"
Dataset name | Data Sources | Training set size | Test set size |
---|---|---|---|
GFG | 30-meter resolution Google satellite imagery 50-meter resolution GaoFen4 satellite imagery | 200,000 feature point pairs 50% correct match pair 50% mismatched pair | 100,000 feature point pairs 50% correct match pair 50% mismatched pair |
THD | 5-meter resolution TianHui satellite three-line array imagery | 200,000 feature point pairs 50% correct match pair 50% mismatched pair | 100,000 feature point pairs 50% correct match pair 50% mismatched pair |
Tab.4
Matching results"
Serial number | Comparative experimental method | Feature points of Google image | Feature points of GaoFen4 image | The matching number of traditional method | The matching number of traditional method and RANSAC | The matching correct rate of traditional method and RANSAC/(%) | The matching number of BSS- 2chDCNN | The matching number of BSS-2ch DCNN and RANSAC | The matching correct rate of BSS-2ch DCNN and RANSAC/(%) |
---|---|---|---|---|---|---|---|---|---|
1 | sift | 10905 | 831 | 23 | 5 | 0.00 | 320 | 32 | 93.75 |
2 | surf | 21837 | 6615 | 140 | 5 | 20.00 | 4017 | 124 | 100.00 |
3 | KAZE | 2659 | 608 | 5 | 4 | 50.00 | 122 | 14 | 92.86 |
4 | AKAZE | 2293 | 491 | 186 | 5 | 0.00 | 118 | 20 | 95.00 |
5 | ORB | 5000 | 2042 | 13 | 4 | 25.00 | 294 | 100 | 100.00 |
6 | BRISK | 8021 | 333 | 436 | 7 | 14.29 | 117 | 12 | 100.00 |
7 | FAST+sift | 65178 | 2812 | 991 | 14 | 21.43 | 1682 | 65 | 98.46 |
8 | AGAST+sift | 71291 | 3305 | 1167 | 12 | 50.00 | 1993 | 87 | 98.85 |
9 | Harris+sift | 1924 | 961 | 0 | 0 | 0.00 | 43 | 26 | 100.00 |
10 | Shi-Tomasi+sift | 8781 | 9115 | 0 | 0 | 0.00 | 3913 | 296 | 100.00 |
[1] | LI Deren . Towards Geo-Spatial Information Science in Big Data Era[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(4):379-384. |
[2] | LI Deren, ZHANG Liangpei, Xia Guisong . Automatic Analysis and Mining of Remtoe Sensing Big Data[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(12):1211-1216. |
[3] | YAN Guoping, HE Junfeng . Extended Laplacian of Gaussian Operator for Edge Detection[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2006,34(10):21-23. |
[4] | ZHAO Wanjin, GONG Shengrong, LIU Chunping , et al. Adaptive Harris Corner Detection Algorithm[J]. Computer Engineering, 2008,34(10):212-214, 217. |
[5] | LOWE D G . Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110. |
[6] | KE Yan, SUKTHANKAR R . PCA-SIFT: A More Distinctive Representation for Local Image Descriptors [C]//Proceedings of the IEEE Computer Society Computer Vision and Pattern Recognition. Washington, DC: IEEE, 2004: 506-513. |
[7] | BAY H, TUYTELAARS T, VAN GOOL L . SURF: Speeded up Robust Features[M] //LEONARDIS A, BISCHOF H, PINZ A. Computer Vision-ECCV 2006. Berlin: Springer, 2006: 404-417. |
[8] | CALONDER M, LEPETIT V, STRECHA C , et al. BRIEF: Binary Robust Independent Elementary Features[M] //DANⅡLIDIS K, MARAGOS P, PARAGIOS N. Computer Vision-ECCV 2010. Berlin: Springer, 2010: 778-792. |
[9] | CALONDER M, LEPETIT V, OZUYSAL M , et al. BRIEF:Computing a Local Binary Descriptor Very Fast[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(7):1281-1298. |
[10] | XU Yunxi, CHEN Fang . Recent Advances in Local Image Descriptor[J]. Journal of Image and Graphics, 2015,20(9):1133-1150. |
[11] | DONG Yang, FAN Dazhao, JI Song , et al. The Purification Method of Matching Points Based on Principal Component Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(2):228-236. |
[12] | FISCHER Philipp, ALEXEY Dosovitskiy, THOMAS Brox . Descriptor Matching with Convolutional Neural Networks: A Comparison to SIFT[J]. arXiv: Computer Vision and Pattern Recognition, 2014. |
[13] | ŽBONTAR J, LECUN Y . Computing the Stereo Matching Cost with a Convolutional Neural Network [C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 1592-1599. |
[14] | ZAGORUYKO S, KOMODAKIS N . Learning to Compare Image Patches via Convolutional Neural Networks [C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 4353-4361. |
[15] | HAN Xufeng, LEUNG T, JIA Yangqing , et al. MatchNet: Unifying Feature and Metric Learning for Patch-based Matching [C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 3279-3286. |
[16] | PAL S K, MITRA S . Multilayer Perceptron, Fuzzy Sets, Classification[J]. IEEE Transactions on Neural Networks, 1992,3(5):683-697. |
[17] | TRAPPEY A J C, HSU F C, TRAPPEY C V , et al. Development of a Patent Document Classification and Search Platform Using a Back-propagation Network[J]. Expert Systems with Applications, 2006,31(4):755-765. |
[18] | SZEGEDY C, LIU Wei, JIA Yangqing , et al. Going Deeper with Convolutions [C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 1-9. |
[19] | ŽBONTAR J, LECUN Y . Stereo Matching by Training A Convolutional Neural Network to Compare Image Patches[J]. The Journal of Machine Learning Research, 2016,17(1):2287-2318. |
[20] | COLLOBERT R, KAVUKCUOGLU K, FARABET C . Torch7: A Matlab-like Environment for Machine Learning [C]//Neural Information Processing Systems Workshop. [s. l]: BigLearn, 2011. |
[21] | CHEN Tianqi, LI Mu, LI Yutian , et al. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems[R]. Nanjin: Neural Information Processing Systems, Workshop on Machine Learning Systems, 2015. |
[22] | CHETLUR Sharan, WOOLLEY Cliff, VANDERMERSCH Philippe , et al. cuDNN: Efficient Primitives for Deep Learning[J]. arXiv preprint arXiv: 1410. 0759, 2014. |
[23] | XU Wei . Towards Optimal One Pass Large Scale Learning with Averaged Stochastic Gradient Descent[J]. arXiv preprint arXiv: 1107.2490, 2011. |
[24] | BROWN M, HUA Gang, WINDER S . Discriminative Learning of Local Image Descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(1):43-57. |
[25] | DU Yulong, LI Jianzeng, ZHANG Yan , et al. Saliency Detection Based on Deep Cross CNN and Non-interaction GrabCut[J]. Computer Engineering and Applications, 2017,53(3):32-40. |
[26] | PABLO F Alcantarilla, ADRIEN Bartoli, JESUS Nuevo . KAZE Features [C]//European Conference on Computer Vision, 2012. |
[27] | PABLO F Alcantarilla, JESUS Nuevo, ADRIEN Bartoli . Fast explicit diffusion for accelerated features in nonlinear scale spaces [C]//British Machine Vision Conference, 2013. |
[28] | ETHAN Rublee, VINCENT Rabaud, KURT Konolige , et al. ORB: An efficient alternative to SIFT or SURF [C]//IEEE International Conference on Computer Vision, 2012. |
[29] | STEFAN Leutenegger, MARGARITA Chli, ROLAND Y . Siegwart. BRISK: Binary robust invariant scalable keypoints [C]//IEEE International Conference on Computer Vision, 2011. |
[30] | EDWARD Rosten, T Drummond . Machine learning for high-speed corner detection [C]//European Conference on Computer Vision, 2006. |
[31] | ELMAR Mair, GREGORY D Hager, DARIUS Burschka , et al. Adaptive and generic corner detection based on the accelerated segment test [C]//European Conference on Computer Vision, 2010. |
[32] | HARRIS C, STEPHENS M . A Combined Corner and Edge Detector [C]// Proceedings of the 4th Alvey Vision Conference. Manchester: Springer, 1988: 147-151. |
[33] | SHI Jianbo, TOMASI . Good features to track [C]//IEEE Conference on Computer Vision and Pattern Recognition, 1994: 593-600. |
[1] | Kexian WANG,Shunyi ZHENG,Rui LI,Li GUI. A Deep Double-Channel Dense Network for Hyperspectral Image Classification [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. |
[2] | Yanjun WANG,Shaochun LI,Mengjie WANG,Yunhao LIN. A Simple Deep Learning Network for Classification of 3D Mobile LiDAR Point Clouds [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 49-59. |
[3] | Long SUN, Tao WU, Guangcai SUN, Dazheng FENG, Lieshu TONG, Mengdao XING. Object Detection Research of SAR Image Using Improved Faster Region-Based Convolutional Neural Network [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28. |
[4] | Hao HE,Shuyang WANG,Shicheng WANG,Dongfang YANG,Xing LIU. A Road Extraction Method for Remote Sensing Image Based on Encoder-Decoder Network [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25. |
[5] | Yun ZHANG. Smart Photogrammetric and Remote Sensing Image Processing for Very High Resolution Optical Images— Examples from the CRC-AGIP Lab at UNB [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 17-26. |
[6] | Jianya GONG,Shunping JI. Photogrammetry and Deep Learning [J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15. |
[7] | Taoyang WANG,Guo ZHANG,Deren LI,Wanshou JIANG,Xinming TANG,Xuelin LIU. Comparison between Plane and Stereo Block Adjustment for ZY-3 Satellite Images [J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 53-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||