Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (1): 47-58.doi: 10.11947/j.JGGS.2023.0104
Previous Articles Next Articles
Received:
2022-02-28
Accepted:
2022-06-08
Online:
2023-03-20
Published:
2023-05-04
Contact:
Hongzhou CHAI
E-mail:1069487749@qq.com;chaihz1969@163.com
About author:
Xu WANG, PhD, research activities include survey data processing, satellite clock models, and their applications in the Global Navigation Satellite System. E-mail: Supported by:
Xu WANG,Hongzhou CHAI. Developing an Innovative High-precision Approach to Predict Medium-term and Long-term Satellite Clock Bias[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 47-58.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Statistics for the prediction results of the three modelsns"
PRN | NAR | W-NAR | WM-NAR | |||||
---|---|---|---|---|---|---|---|---|
RMSE | Range | RMSE | Range | RMSE | Range | |||
02 | 24.973 | 54.042 | 21.336 | 47.432 | 20.154 | 45.223 | ||
08 | 4.765 | 13.431 | 4.442 | 10.312 | 4.115 | 8.262 | ||
10 | 219.88 | 608.41 | 192.47 | 572.642 | 175.324 | 523.521 | ||
24 | 38.557 | 90.910 | 30.543 | 81.342 | 29.032 | 78.253 | ||
27 | 62.545 | 109.684 | 61.324 | 94.453 | 60.012 | 89.231 | ||
31 | 71.251 | 20.747 | 67.123 | 18.175 | 53.678 | 17.423 | ||
All | 70.328 | 149.537 | 62.873 | 137.393 | 57.053 | 126.985 |
Tab.2
Statistics of the prediction results for the 15 d/ns prediction"
PRN | QP | GM(1,1) | ARIMA | WNN | WM-NAR | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | Range | RMSE | Range | RMSE | Range | RMSE | Range | RMSE | Range | |||||||||||
02 | 56.521 | 99.115 | 169.150 | 311.350 | 58.951 | 114.830 | 14.321 | 26.566 | 20.154 | 45.223 | ||||||||||
08 | 5.783 | 19.909 | 79.137 | 136.640 | 16.904 | 28.518 | 1.111 | 5.292 | 4.115 | 8.262 | ||||||||||
10 | 167.04 | 301.59 | 1082.5 | 2046.1 | 369.57 | 673.72 | 187.367 | 632.581 | 175.324 | 523.521 | ||||||||||
24 | 10.200 | 4.057 | 2.661 | 4.973 | 12.273 | 40.278 | 34.365 | 89.171 | 29.032 | 78.253 | ||||||||||
27 | 68.445 | 122.800 | 766.030 | 1449.3 | 120.78 | 222.85 | 89.421 | 101.272 | 60.012 | 89.231 | ||||||||||
31 | 11.357 | 16.863 | 575.680 | 1115.0 | 9.123 | 14.451 | 70.432 | 26.342 | 53.678 | 17.423 | ||||||||||
ALL | 53.224 | 94.056 | 445.860 | 843.894 | 97.934 | 182.441 | 66.1695 | 146.8707 | 57.053 | 126.985 | ||||||||||
Time/s | 0.54 | 0.76 | 2.48 | 10.8 | 1.49 |
Tab.3
Statistics of the prediction results for the 30 d/ns prediction"
PRN | QP | GM(1,1) | ARIMA | WNN | WM-NAR | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | Range | RMSE | Range | RMSE | Range | RMSE | Range | RMSE | Range | |||||||||||
02 | 161.63 | 328.560 | 494.99 | 1014.7 | 173.350 | 360.080 | 23.324 | 32.566 | 37.334 | 26.115 | ||||||||||
08 | 10.722 | 48.056 | 221.68 | 439.570 | 23.000 | 40.750 | 5.631 | 9.392 | 6.387 | 13.126 | ||||||||||
10 | 469.660 | 955.410 | 3253.4 | 6756.4 | 886.070 | 170.630 | 212.289 | 642.325 | 216.123 | 596.321 | ||||||||||
24 | 34.087 | 100.310 | 56.247 | 112.120 | 37.649 | 98.823 | 51.643 | 106.723 | 41.112 | 78.432 | ||||||||||
27 | 195.7 | 404.9 | 4804.5 | 2309.4 | 304.91 | 605.89 | 98.421 | 112.332 | 66.371 | 92.231 | ||||||||||
31 | 17.72 | 12.759 | 1864.2 | 4019.3 | 8.846 | 14.451 | 91.567 | 48.576 | 57.432 | 23.552 | ||||||||||
ALL | 148.253 | 308.333 | 1782.5 | 2441.9 | 238.971 | 215.1 | 75.956 | 144.129 | 70.793 | 138.296 | ||||||||||
Time/s | 0.66 | 0.82 | 2.67 | 19.6 | 1.87 |
Tab.4
Statistics of the prediction results for the 60 d/ns prediction"
PRN | QP | GM(1,1) | ARIMA | WNN | WM-NAR | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | Range | RMSE | Range | RMSE | Range | RMSE | Range | RMSE | Range | |||||||||||
02 | 571.040 | 1251.3 | 1705.4 | 3697.8 | 600.630 | 1314.4 | 43.123 | 59.512 | 50.235 | 41.721 | ||||||||||
08 | 80.744 | 188.820 | 737.99 | 1623.1 | 29.603 | 111.520 | 10.481 | 14.532 | 12.337 | 21.123 | ||||||||||
10 | 1552.6 | 3310.4 | 11508.1 | 25249.4 | 2398.4 | 4818.9 | 247.543 | 752.369 | 235.223 | 672.123 | ||||||||||
24 | 131.89 | 323.51 | 180.98 | 389.11 | 134.78 | 320.39 | 72.963 | 134.334 | 65.371 | 109.532 | ||||||||||
27 | 693.7 | 1517.2 | 8218 | 18066 | 916.4 | 1920.1 | 111.324 | 123.324 | 77.773 | 91.231 | ||||||||||
31 | 22.325 | 51.988 | 7872.8 | 18604 | 14.19 | 37.297 | 112.365 | 126.554 | 65.432 | 32.231 | ||||||||||
ALL | 508.717 | 1107.2 | 5037.2 | 11271.6 | 682.334 | 1420.4 | 99.633 | 201.771 | 84.395 | 161.327 | ||||||||||
Time/s | 0.76 | 0.89 | 2.87 | 32.3 | 2.02 |
[1] |
JIANG Chen, ZHANG Shubi, CAO Yizhi, et al. A robust fault detection algorithm for the GNSS/INS integrated navigation systems[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 12-24. DOI: 10.11947/j.JGGS.2020.0102.
doi: 10.11947/j.JGGS.2020.0102 |
[2] | WANG Yupu, LYU Zhiping, CHEN Zhengsheng, et al. Research on the algorithm of wavelet neural network to predict satellite clock bias[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3): 323-330. |
[3] |
WANG Yupu, LU Zhiping, QU Yunying, et al. Improving prediction performance of GPS satellite clock bias based on wavelet neural network[J]. GPS Solutions, 2017, 21(2): 523-534.
doi: 10.1007/s10291-016-0543-z |
[4] |
WANG Yupu. Research on modeling and prediction of the satellite clock bias and performance evaluation of GNSS satellite clocks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 1026. DOI: 10.11947/j.AGCS.2018.20170467.
doi: 10.11947/j.AGCS.2018.20170467 |
[5] |
ZHOU Peiyuan, DU Lan, LU Yu, et al. Periodic variations of BeiDou satellite clock offsets derived from multi-satellite orbit determination[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12): 1299-1306. DOI: 10.11947/j.AGCS.2015.20150183.
doi: 10.11947/j.AGCS.2015.20150183 |
[6] | ZHANG Qianqian, HAN Songhui, DU Lan, et al. Bayesian methods for outliers detection and estimation in clock offset measurements of satellite-ground time transfer[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 772-777. |
[7] |
CASEIRO L M A, MENDES A M S. Real-time IGBT open-circuit fault diagnosis in three-level neutral-point-clamped voltage-source rectifiers based on instant voltage error[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1669-1678.
doi: 10.1109/TIE.2014.2341558 |
[8] | WU Jing. Study on detection of GPS clock jump using median absolute deviation[J]. Science of Surveying and Mapping, 2015, 40(6): 36-41. |
[9] | YUAN Kaiming, SHU Naiqiu, SUN Yunlian, et al. Wavelet denoising based on threshold optimization method[J]. Engineering Journal of Wuhan University, 2015, 48(1): 74-80. |
[10] | LI Kejun, GAO Jinyao, SONG Jianhua, et al. Forecast of short-term metro passenger flow based on NARNN model[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(1): 103-107. |
[11] |
WANG Xu, CHAI Hongzhou, WANG Chang. T-S fuzzy neural network to predict satellite clock bias[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 580-588. DOI: 10.11947/j.AGCS.2020.20190156.
doi: 10.11947/j.AGCS.2020.20190156 |
[12] | LIANG Yueji, REN Chao, YANG Xiufa, et al. Grey model based on first difference in the application of the satellite clock bias prediction[J]. Acta Astronomica Sinica, 2015, 56(3): 264-277. |
[13] |
JONSSON P, EKLUNDH L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1824-1832.
doi: 10.1109/TGRS.2002.802519 |
[14] | WANG Jigang. Research on time comparison based on GPS precise point positioning and atomic clock prediction[D]. Xi’an: National Time Service Center, Chinese Academy of Sciences, 2010. |
[15] | ZHU Xiangwei, XIAO Hua, YONG Shaowei, et al. The Kalman algorithm used for satellite clock offset prediction and its performance analysis[J]. Journal of Astronautics, 2008, 29(3):966-970, 1052. |
[16] | ZHAO Liang, LAN Xiaoqi, SHENG Jianyue. Application of ARIMA model in satellite clock error forecasting[J]. Journal of Water Resources and Architectural Engineering, 2012, 10(1): 135-137. |
[17] | WANG Yupu, LV Zhiping, CHEN Zhengsheng, et al. A new data preprocessing method for satellite clock bias and its application in WNN to predict medium-term and long-term clock bias[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 373-379. |
[18] |
WANG Xu, CHAI Hongzhou, WANG Chang, et al. Improved wavelet neural network based on change rate to predict satellite clock bias[J]. Survey Review, 2021, 53(379): 325-334.DOI: 10.1080/00396265.2020.1758999
doi: 10.1080/00396265.2020.1758999 |
[19] | SHAN R, SHI S, LIU W, et al. Thesis on combination stock forecasting model with wavelet denoising and optimized arima method[J]. ICIC Express Letters, 2014, 8(8): 2315-2320. |
[20] |
XIAO Shungen, ZHANG Zexiong, SONG Mengmeng. Fault diagnosis method of gear based on lifting wavelet packet and combined optimization BP neural network[J]. Vibroengineering PROCEDIA, 2019, 29: 18-23.
doi: 10.21595/vp |
[21] |
ZHANG Zhetao, ZHU Jianjun, KUANG Cuilin, et al. Multi-threshold wavelet packet de-noising method and its application in deformation analysis[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1): 13-20. DOI: 10.13485/j.cnki.11-2089.2014.0003.
doi: 10.13485/j.cnki.11-2089.2014.0003 |
[22] |
SESIA I, CANTONI E, CERNIGLIARO A, et al. An efficient and configurable preprocessing algorithm to improve stability analysis[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(4):575-581.
doi: 10.1109/TUFFC.2015.2496280 |
[23] | GUO Chengjun, TENG Yunlong. Performance analysis of satellite clock bias based on wavelet analysis and neural network[J]. Acta Astronomica Sinica, 2010, 51(4): 395-403. |
[24] | WANG Xu, LIU Wensheng, WANG Chang. Processing of monitoring data of building deformation based on wavelet threshold denoising[J]. Engineering of Surveying and Mapping, 2011, 20(1): 44-46. |
[25] | TAO Ke, ZHU Jianjun. A hybrid indicator for determining the best decomposition scale of wavelet denoising[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 749-755. |
[26] | YUE Xinzheng, LI Leimin, SUN Fei. Quartz Flexible Accelerometer-based parametric modeling and forecasting NAR dynamic neural network[J]. Journal of Southwest University of Science and Technology, 2016, 31(1): 88-92. |
[27] |
LI Xiaopeng. Comparing the Kalman filter with a Monte Carlo-based artificial neural network in the INS/GPS vector gravimetric system[J]. Journal of Geodesy, 2009, 83(9): 797-804.
doi: 10.1007/s00190-008-0293-y |
[28] |
CHENG B, TONG H. On consistent nonparametric order determination and chaos[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1992, 54(2): 427-449.
doi: 10.1111/rssb.1992.54.issue-2 |
[29] |
LI Wentao, YAN Xiong, XIA Lei, et al. Abnormal data detection and process by using BDS satellite offset semiparametric adjustment model[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(1): 55-64. DOI: 10.11947/j.AGCS.2020.20180384.
doi: 10.11947/j.AGCS.2020.20180384 |
[30] | ZHANG Yipeng, CHEN Liang, HAO Huan. LM based training algorithm for quantum neural networks[J]. Computer Science, 2013, 40(9): 221-224. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||