Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (1): 1-10.doi: 10.11947/j.JGGS.2023.0101
Jianmin WANG(),Jiapeng HUANG()
Received:
2022-01-11
Accepted:
2022-03-21
Online:
2023-03-20
Published:
2023-05-04
Contact:
Jiapeng HUANG
E-mail:wjminlntu@163.com;18941821626@163.com
About author:
Jianmin WANG, associate professor,majors in GNSS data processing. E-mail: Supported by:
Jianmin WANG,Jiapeng HUANG. An Improved Extreme Learning Machine Prediction Model for Ionospheric Total Electron Content[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 1-10.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.2
Study data and experimental conditions"
Grid point information | Year | Latitude | Training data/doy | |
---|---|---|---|---|
Experimental group 1 | Experiment 1 | 2008 | (125°W, 87.5°N) | 51—60 |
Experiment 2 | 2011 | (125°W, 45°N) | 101—110 | |
Experiment 3 | 2014 | (125°W, 22.5°N) | 201—210 | |
Experimental group 2 | Experiment 4 | 2007 | (125°W, 22.5°S) | 31—35 |
Experiment 5 | 2009 | (125°W, 45°S) | 151—155 | |
Experiment 6 | 2006 | (125°W, 87.5°S) | 351—355 | |
Experimental group 3 | Experiment 7 | 2017 | (15°E, 45°N) | 21—40 |
Experiment 8 | 2017 | (65°E, 45°N) | 21—40 | |
Experiment 9 | 2017 | (125°E, 22.5°S) | 21—40 |
Tab.3
Accuracy results for the improved ELM model"
Experiment | RMSE/TECU | MRE/(%) | MAE/TECU | MSE/TECU | Excitation function | The number of hidden layers |
---|---|---|---|---|---|---|
1 | 0.566 | 14.0 | 0.435 | 0.320 | ELU | 21 |
2 | 1.408 | 7.4 | 1.071 | 1.983 | Sig | 10 |
3 | 1.198 | 3.3 | 0.875 | 1.434 | Bent | 7 |
4 | 5.992 | 15.4 | 3.598 | 35.905 | ELU | 2 |
5 | 1.023 | 13.2 | 0.868 | 1.046 | SoftPlus | 21 |
6 | 0.645 | 8 | 0.56 | 0.416 | Gaussian | 6 |
7 | 0.429 | 3.7 | 0.299 | 0.184 | ELU | 5 |
8 | 0.588 | 6.2 | 0.487 | 0.346 | Bent | 21 |
9 | 0.639 | 4.9 | 0.55 | 0.409 | Tanh | 23 |
[1] |
CANDER L R, HARALAMBOUS H. On the importance of total electron content enhancements during the extreme solar minimum[J]. Advances in Space Research, 2011, 47(2): 304-311.
doi: 10.1016/j.asr.2010.08.026 |
[2] |
CANDERL R. Re-visit of ionosphere storm morphology with TEC data in the current solar cycle[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 138-139: 187-205.
doi: 10.1016/j.jastp.2016.01.008 |
[3] |
HABARULEMA J B, KATAMZI Z T, SIBANDA P, et al. Assessing ionospheric response during some strong storms in solar cycle 24 using various data sources[J]. Journal of Geophysical Research: Space Physics, 2017, 122(1): 1064-1082.
doi: 10.1002/jgra.v122.1 |
[4] |
NAVA B, COÏSSON P, RADICELLA S M. A new version of the NeQuick ionosphere electron density model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(15): 1856-1862.
doi: 10.1016/j.jastp.2008.01.015 |
[5] |
JAKOWSKI N, HOQUE M M, MAYER C. A new global TEC model for estimating transionospheric radio wave propagation errors[J]. Journal of Geodesy, 2011, 85(12): 965-974.
doi: 10.1007/s00190-011-0455-1 |
[6] |
TANG Jun. Studies on three-dimension ionospheric tomography using GNSS measurements and ionospheric disturbances[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(1): 117. DOI:10.11947/j.AGCS.2015.20130398.
doi: 10.11947/j.AGCS.2015.20130398 |
[7] |
ZHANG Xiaohong, REN Xiaodong, WU Fengbo, et al. Short-term TEC prediction of ionosphere based on ARIMA model[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(2): 118-124. DOI:10.13485/j.cnki.11-2089.2014.0018.
doi: 10.13485/j.cnki.11-2089.2014.0018 |
[8] |
WANG Jianmin, LI Yabo, MA Tianming, et al. Real time and fast algorithm for integer ambiguity of reference stations in large-scale network RTK[J]. Bulletin of Surveying and Mapping, 2017(10): 7-11. DOI: 10.13474/j.cnki.11-2246.2017.0307.
doi: 10.13474/j.cnki.11-2246.2017.0307 |
[9] | DENG Zhongxin, LIU Ruiyuan, ZHEN Weimin, et al. Study on the ionospheric TEC storms over China[J]. Chinese Journal of Geophysics, 2012, 55(7): 2177-2184. |
[10] |
SHARMA G, RAY P, MOHANTY S, et al. Ionospheric TEC modelling for earthquakes precursors from GNSS data[J]. Quaternary International, 2017, 462: 65-74.
doi: 10.1016/j.quaint.2017.05.007 |
[11] |
CHERNOUSSA, SHAGIMURATOVII, IEVENKOIB, et al. Auroral perturbations as an indicator of ionosphere impact on navigation signals[J]. Russian Journal of Physical Chemistry B, 2018, 12(3):562-567.
doi: 10.1134/S1990793118030065 |
[12] | MUKESHR, KARTHIKEYANV, SOMAP, et al. Cokriging based statistical approximation model for forecasting ionospheric VTEC during high solar activity and storm days[J]. Astrophysics and Space Science, 2019, 364(8):131. |
[13] | LIU Xiandong, SONG Lijie, YANG Xiaohui, et al. Predicting shortdated ionospheric TEC based on wavelet neural network[J]. Hydrographic Surveying and Charting, 2010, 30(5): 49-51, 55. |
[14] |
AKHOONDZADEH M, DE SANTIS A, MARCHETTI D, et al. Anomalous seismo-LAI variations potentially associated with the 2017 MW=7.3 Sarpol-e Zahab (Iran) earthquake from swarm satellites, GPS-TEC and climatological data[J]. Advances in Space Research, 2019, 64(1): 143-158.
doi: 10.1016/j.asr.2019.03.020 |
[15] | YAN Xiangxiang, SHAN Xinjian, CAO Jinbin, et al. Preliminary study of the seimoionospheric perturbation before Tohoku-oki MW 9.0 earthquake[J]. Progress in Geophysics, 2013, 28(1): 155-164. |
[16] |
ZHAO Chuanbao, ZHANG Baocheng, ODOLINSKI R, et al. Combined use of single-frequency data and global ionosphere maps to estimate BDS and Galileo satellite differential code biases[J]. Measurement Science and Technology, 2020, 31(1): 015002.
doi: 10.1088/1361-6501/ab3d70 |
[17] |
PEREZ R O. Using Tensor Flow-based neural network to estimate GNSS single frequency ionospheric delay[J]. Advances in Space Research, 2019, 63(5): 1607-1618.
doi: 10.1016/j.asr.2018.11.011 |
[18] |
JAKOBSEN J, KNUDSEN P, JENSEN A B O. Analysis of local ionospheric time varying characteristics with singular value decomposition[J]. Journal of Geodesy, 2010, 84(7): 449-456.
doi: 10.1007/s00190-010-0378-2 |
[19] | AN Jiachun, NING Xinguo, WANG Zemin, et al. Antarctic ionospheric prediction based on spherical cap harmonic analysis and time series analysis[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 677-681. |
[20] | LIU Lilong, CHEN Jun, HUANG Liangke, et al. TEC forecast of short-term ionosphere based on wavelet-ARIMA[J]. Journal of Guilin University of Technology, 2016, 36(2): 294-299. |
[21] | LU Chenlong, KUANG Cuilin, ZHANG Jinsheng, et al. Predicting ionosphere TEC with the combination of singular spectrum analysis and ARMA model[J]. Journal of Geodesy and Geodynamics, 2014, 34(6): 44-49. |
[22] | TANG Jun, YAO Yibin, CHEN Peng, et al. Prediction models of ionospheric TEC improved by EMD method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411, 444. |
[23] |
WANG Ruopeng, ZHOU Chen, DENG Zhongxin, et al. Predicting foF2 in the China region using the neural networks improved by the genetic algorithm[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 92: 7-17.
doi: 10.1016/j.jastp.2012.09.010 |
[24] |
LIU J Y, CHEN C H, CHEN Y I, et al. A statistical study of ionospheric earthquake precursors monitored by using equatorial ionization anomaly of GPS TEC in Taiwan during 2001—2007[J]. Journal of Asian Earth Sciences, 2010, 39(1-2): 76-80.
doi: 10.1016/j.jseaes.2010.02.012 |
[25] |
CESARONI C, SPOGLI L, ARAGON-ANGEL A, et al. Neural network based model for global total electron content forecasting[J]. Journal of Space Weather and Space Climate, 2020, 10(S335): 11.
doi: 10.1051/swsc/2020013 |
[26] |
ACHARYA R, ROY B, SIVARAMAN M R, et al. Prediction of ionospheric total electron content using adaptive neural network with in-situ learning algorithm[J]. Advances in Space Research, 2011, 47(1): 115-123.
doi: 10.1016/j.asr.2010.08.016 |
[27] | WANG Jianmin, HUANG Jiapeng, LIU Ziran, et al. Improvement of prediction model for ionospheric TEC with adaptive Kalman filter[J]. Journal of Navigation and Positioning, 2018, 6(2): 121-127. |
[28] | WANG Jianmin, HUANG Jiapeng, ZHU Huizhong, et al. Study of the ionosphere TEC forecasting method[J]. Science of Surveying and Mapping, 2016, 41(12): 47-52. |
[29] |
HUANG Z, LI Q B, YUAN H. Forecasting of ionospheric vertical TEC 1-h ahead using a genetic algorithm and neural network[J]. Advances in Space Research, 2015, 55(7): 1775-1783.
doi: 10.1016/j.asr.2015.01.026 |
[30] | SABZEHEE F, FARZANEH S, SHARIFI M A, et al. TEC regional modeling and prediction using ANN method and single frequency receiver over IRAN[J]. Annals of Geophysics, 2018, 61(1): GM103. |
[31] |
TEBABAL A, RADICELLA S M, DAMTIE B, et al. Feed forward neural network based ionospheric model for the east African region[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 191:105052.
doi: 10.1016/j.jastp.2019.05.016 |
[32] |
INYURT S, SEKERTEKIN A. Modeling and predicting seasonal ionospheric variations in Turkey using Artificial Neural Network (ANN)[J]. Astrophysics and Space Science, 2019, 364(4): 62.
doi: 10.1007/s10509-019-3545-9 |
[33] | HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man,and Cybernetics, 2012, 42(2): 513-529. |
[34] |
LI Lin, JI Hongbing. Signal feature extraction based on an improved EMD method[J]. Measurement, 2009, 42(5): 796-803.
doi: 10.1016/j.measurement.2009.01.001 |
[35] |
WANG Tong, ZHANG Mingcai, YU Qihao, et al. Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal[J]. Journal of Applied Geophysics, 2012, 83: 29-34.
doi: 10.1016/j.jappgeo.2012.05.002 |
[36] | SU Wenbin, LEI Zhufeng. Mold-level prediction based on long short-term memory model and multi-mode decomposition with mutual information entropy[J]. Advances in Mechanical Engineering, 2019, 11(12): 168. |
[37] |
JIN Xuebo, YANG Nianxiang, WANG Xiaoyi, et al. Hybrid deep learning predictor for smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group model[J]. Sensors, 2020, 20(5): 1334.
doi: 10.3390/s20051334 |
[38] | ZHANG Qian, ZHANG Jinjin. Short-term load forecasting method based on EWT and IDBSCAN[J]. Journal of Electrical Engineering & Technology, 2020, 15(2): 635-644. |
[39] |
CHEN Weijie, GIGER M L, BICK U. A fuzzy C-means-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images[J]. Academic Radiology, 2006, 13(1): 63-72.
pmid: 16399033 |
[40] | CHIN C S, JI Xi, WOO W L, et al. Modified multiple generalized regression neural network models using fuzzy C-means with principal component analysis for noise prediction of offshore platform[J]. Neural Computing and Applications, 2019, 34(4): 1127-1142. |
[41] |
KELOTRA A, PANDEY P. Stock market prediction using optimized deep-ConvLSTM model[J]. Big Data, 2020, 8(1): 5-24.
doi: 10.1089/big.2018.0143 |
[42] |
HATHAWAY R J, BEZDEK J C. Fuzzy C-means clustering of incomplete data[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2001, 31(5): 735-744.
doi: 10.1109/3477.956035 |
[43] |
YU Jian, CHENG Qiansheng, HUANG Houkan. Analysis of the weighting exponent in the FCM[J]. IEEE Transactions on Systems, Man,and Cybernetics, Part B, 2004, 34(1): 634-639.
doi: 10.1109/TSMCB.2003.810951 |
[44] | GHOSH S, KUMAR S. Comparative analysis of k-means and fuzzy C-means algorithms[J]. International Journal of Advanced Computer Science and Applications, 2013, 4(4): 35-39. |
[45] | YIN Dongyang, SHENG Yifa, JIANG Mingjie, et al. Short-term wind speed forecasting using Elman neural network based on rough set theory and principal components analysis[J]. Power System Protection and Control, 2014, 42(11): 46-51. |
[46] |
SUN Zhenli, WANG Han, LAU W S, et al. Application of BW-ELM model on traffic sign recognition[J]. Neurocomputing, 2014, 128: 153-159.
doi: 10.1016/j.neucom.2012.11.057 |
[47] |
HUANG Guangbin, ZHU Qinyu, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
doi: 10.1016/j.neucom.2005.12.126 |
[1] | Wenjie LIN,Yu LI,Quanhua ZHAO. High-resolution Remote Sensing Image Segmentation Using Minimum Spanning Tree Tessellation and RHMRF-FCM Algorithm [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 52-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||