Journal of Geodesy and Geoinformation Science ›› 2022, Vol. 5 ›› Issue (4): 10-22.doi: 10.11947/j.JGGS.2022.0402
• Special Issue • Previous Articles Next Articles
Qiuyu YAN1(),Wufan ZHAO2(),Xiao HUANG3,Xianwei LYU4
Received:
2022-06-15
Accepted:
2022-09-15
Online:
2022-12-20
Published:
2023-03-15
Contact:
Wufan ZHAO
E-mail:wufan.zhao@utwente.nl
About author:
Qiuyu YAN (1995—), male, master, majors in geoinformatics and earth observation, employed in PIESAT as an algorithm engineer. E-mail: Supported by:
Qiuyu YAN, Wufan ZHAO, Xiao HUANG, Xianwei LYU. Automated Delineation of Smallholder Farm Fields Using Fully Convolutional Networks and Generative Adversarial Networks[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 10-22.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.6
F1-score comparison among different methods"
Methods | TS1 | TS2 | TS3 |
---|---|---|---|
PSPNet | 0.602 | 0.601 | 0.611 |
U-Net | 0.623 | 0.613 | 0.624 |
SegNet | 0.651 | 0.661 | 0.658 |
OCRNet | 0.682 | 0.689 | 0.688 |
OCRNet+ContourGAN (baseline) | 0.691 | 0.695 | 0.699 |
Baseline with random rotation | 0.693 | 0.699 | 0.703 |
Baseline with Pixel2pixel GAN | 0.704 | 0.706 | 0.711 |
[1] |
LOWDER S K, SKOET J, RANEY T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide[J]. World Development, 2016, 87: 16-29. DOI: 10.1016/J.WORLDDEV.2015.10.041.
doi: 10.1016/J.WORLDDEV.2015.10.041 |
[2] |
GARCÍA-PEDRERO A, GONZALO-MARTÍN C, LILLO-SAAVEDRA M. A machine learning approach for agricultural parcel delineation through agglomerative segmentation[J]. International Journal of Remote Sensing, 2017, 38(7): 1809-1819. DOI: 10.1080/01431161.2016.1278312.
doi: 10.1080/01431161.2016.1278312 |
[3] | ROBERTS L G. Machine perception of three-dimensional solids[D]. Cambridge: Massachusetts Institute of Technology, 1963. |
[4] | SOBEL I E. Camera models and machine perception[D]. Stanford: Stanford University, 1970. |
[5] |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698.
doi: 10.1109/TPAMI.1986.4767851 |
[6] |
BERGADO J R, PERSELLO C, GEVAERT C. A deep learning approach to the classification of sub-decimetre resolution aerial images[C]// Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing:IEEE, 2016: 1516-1519. DOI: 10.1109/IGARSS.2016.7729387.
doi: 10.1109/IGARSS.2016.7729387 |
[7] |
WALDNER F, DIAKOGIANNIS F I, BATCHELOR K, et al. Detect, consolidate, delineate: scalable mapping of field boundaries using satellite images[J]. Remote Sensing, 2021, 13(11): 2197. DOI: 10.3390/RS13112197.
doi: 10.3390/RS13112197 |
[8] |
LONG Jiang, LI Mengmeng, WANG Xiaoqin, et al. Delineation of agricultural fields using multi-task BsiNet from high-resolution satellite images[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102871. DOI: 10.1016/J.JAG.2022.102871.
doi: 10.1016/J.JAG.2022.102871 |
[9] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: ACM, 2014: 2672-2680. |
[10] | XIE C, WANG J, ZHANG Z, et al. Adversarial examples for semantic segmentation and object detection[C]// Proceedings of IEEE international conference on computer vision. Venice, Italy:IEEE, 2017:1369-1378. |
[11] |
HONG Y, HWANG U, YOO J, et al. How generative adversarial networks and their variants work: an overview[J]. ACM Computing Surveys, 2017, 52(1): 10. DOI: 10.1145/3301282.
doi: 10.1145/3301282 |
[12] |
LIN D Y, FU K, WANG Y, et al. MARTA GANs: unsupervised representation learning for remote sensing image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2092-2096. DOI: 10.1109/LGRS.2017.2752750.
doi: 10.1109/LGRS.2017.2752750 |
[13] |
PERSELLO C, TOLPEKIN V A, BERGADO J R, et al. Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial grouping[J]. Remote Sensing of Environment, 2019, 231: 111253. DOI: 10.1016/J.RSE.2019.111253.
doi: 10.1016/J.RSE.2019.111253 |
[14] |
COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619. DOI: 10.1109/34.1000236.
doi: 10.1109/34.1000236 |
[15] |
CHEN P C, PAVLIDIS T. Segmentation by texture using a co-occurrence matrix and a split-and-merge algorithm[J]. Computer Graphics and Image Processing, 1979, 10(2): 172-182. DOI: 10.1016/0146-664X(79)90049-2.
doi: 10.1016/0146-664X(79)90049-2 |
[16] |
ADAMS R, BISCHOF L. Seeded region growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6): 641-647. DOI: 10.1109/34.295913.
doi: 10.1109/34.295913 |
[17] |
MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549. DOI: 10.1109/TPAMI.2004.1273918.
doi: 10.1109/TPAMI.2004.1273918 pmid: 15460277 |
[18] |
MUELLER M, SEGL K, KAUFMANN H. Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery[J]. Pattern Recognition, 2004, 37(8): 1619-1628. DOI: 10.1016/J.PATCOG.2004.03.001.
doi: 10.1016/J.PATCOG.2004.03.001 |
[19] |
TIWARI P S, PANDE H, KUMAR M, et al. Potential of IRS P-6 LISS IV for agriculture field boundary delineation[J]. Journal of Applied Remote Sensing, 2009, 3(1): 033528. DOI: 10.1117/1.3133306.
doi: 10.1117/1.3133306 |
[20] |
TURKER M, KOK E H. Field-based sub-boundary extraction from remote sensing imagery using perceptual grouping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 79: 106-121. DOI: 10.1016/J.ISPRSJPRS.2013.02.009.
doi: 10.1016/J.ISPRSJPRS.2013.02.009 |
[21] |
DROZDZAL M, VORONTSOV E, CHARTRAND G, et al. The importance of skip connections in biomedical image segmentation[C]// Proceedings of the First International Workshop on Deep Learning and Data Labeling for Medical Applications. Athens: Springer, 2016: 179-187. DOI: 10.1007/978-3-319-46976-8_19.
doi: 10.1007/978-3-319-46976-8_19 |
[22] |
CHRIST P F, ELSHAER M E A, ETTLINGER F, et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields[C]// Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Athens: Springer, 2016: 415-423. DOI: 10.1007/978-3-319-46723-8_48.
doi: 10.1007/978-3-319-46723-8_48 |
[23] |
MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Fully convolutional neural networks for remote sensing image classification[C]// Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing:IEEE, 2016: 5071-5074. DOI: 10.1109/IGARSS.2016.7730322.
doi: 10.1109/IGARSS.2016.7730322 |
[24] | YANG J M, PRICE B, COHEN S, et al. Object contour detection with a fully convolutional encoder-decoder network[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 193-202. |
[25] | XIE S N, TU Z W. Holistically-nested edge detection[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1395-1403. |
[26] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. DOI: 10.1109/TPAMI.2016.2572683.
doi: 10.1109/TPAMI.2016.2572683 pmid: 27244717 |
[27] |
ZUO Z C, ZHANG W, ZHANG D Y. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 718-726. DOI: 10.11947/j.AGCS.2019.20170740.
doi: 10.11947/j.AGCS.2019.20170740 |
[28] |
LIN W J, LI Y, ZHAO Q H. High-resolution remote sensing image segmentation using minimum spanning tree tessellation and RHMRF-FCM algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 64-74. DOI: 10.11947/j.AGCS.2019.20170585.
doi: 10.11947/j.AGCS.2019.20170585 |
[29] | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]// Proceedings of the 4th International Conference on Learning Representations. San Juan: ICLR, 2016. |
[30] |
ZHU L, CHEN Y S, GHAMISI P, et al. Generative adversarial networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5046-5063. DOI: 10.1109/TGRS.2018.2805286.
doi: 10.1109/TGRS.2018.2805286 |
[31] |
SUN Q Q, BOURENNANE S. Unsupervised feature extraction based on improved Wasserstein generative adversarial network for hyperspectral classification[C]// Proceedings of SPIE 11059, Multimodal Sensing:Technologies and Applications. Munich: SPIE, 2019: 110590L. DOI: 10.1117/12.2527466.
doi: 10.1117/12.2527466 |
[32] |
YANG H J, LI Y, YAN X F, et al. ContourGAN: image contour detection with generative adversarial network[J]. Knowledge-Based Systems, 2019, 164: 21-28. DOI: 10.1016/J.KNOSYS.2018.09.033.
doi: 10.1016/j.knosys.2018.09.033 |
[33] | LI J N, LIANG X D, WEI Y C, et al. Perceptual generative adversarial networks for small object detection[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1951-1959. |
[34] | LUCIO D R, LAROCA R, SEVERO E, et al. Fully convolutional networks and generative adversarial networks applied to sclera segmentation[C]// Proceedings of 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems. Redondo Beach: IEEE, 2018: 1-7. |
[35] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. |
[36] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28.
doi: 10.1007/978-3-319-24574-4_28 |
[37] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230-6239. DOI: 10.1109/CVPR.2017.660.
doi: 10.1109/CVPR.2017.660 |
[38] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE, 2016: 770-778. |
[39] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704 |
[40] |
YUAN Y H, CHEN X L, WANG J D. Object-contextual representations for semantic segmentation[C]// Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 173-190. DOI: 10.1007/978-3-030-58539-6_11.
doi: 10.1007/978-3-030-58539-6_11 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||