[1] |
ALBANWAN H, QIN Rongjun, LU Xiaohu, et al. 3D iterative spatiotemporal filtering for classification of multitemporal satellite data sets[J]. Photogrammetric Engineering & Remote Sensing, 2020, 86(1): 23-31. DOI: 10.14358/PERS.86.1.23.
doi: 10.14358/PERS.86.1.23
|
[2] |
ALBANWAN H, QIN R. Enhancement of depth map by fusion using adaptive and semantic-guided spatiotemporal filtering[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2020V-3: 227-232. DOI: 10.5194/isprs-annals-V-3-2020-227-2020.
doi: 10.5194/isprs-annals-V-3-2020-227-2020
|
[3] |
FACCIOLO G, DE FRANCHIS C, MEINHARDT-LLOPIS E. Automatic 3D reconstruction from multi-date satellite images[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, HI: IEEE, 2017: 1542-1551. DOI: 10.1109/CVPRW.2017.198.
doi: 10.1109/CVPRW.2017.198
|
[4] |
QIN Rongjun, SONG Shuang, LING Xiao, et al. 3D reconstruction through fusion of cross-view images[EB/OL]. [2022-12-20].
|
[5] |
RUMPLER M, WENDEL A, BISCHOF H. Probabilistic range image integration for DSM and true-orthophoto generation[C]// Proceedings of the 18th Scandinavian Conference on Image Analysis. Espoo: Springer, 2013: 533-544. DOI: 10.1007/978-3-642-38886-6_50.
doi: 10.1007/978-3-642-38886-6_50
|
[6] |
TOUTIN T. DSM generation and evaluation from quickbird stereo imagery with 3D physical modelling[J]. International Journal of Remote Sensing, 2004, 25(22): 5181-5192. DOI: 10.1080/01431160410001726030.
doi: 10.1080/01431160410001726030
|
[7] |
CHANG Jiaren, CHEN Yongsheng. Pyramid stereo matching network[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 5410-5418. DOI: 10.1109/CVPR.2018.00567.
doi: 10.1109/CVPR.2018.00567
|
[8] |
CHENG Xuelian, ZHONG Yiran, HARANDI M, et al. Hierarchical neural architecture search for deep stereo matching[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2020: 22158-22169.
|
[9] |
HIRSCHMULLER H. Accurate and efficient stereo processing by semi-global matching and mutual information[C]// Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). San Diego, CA: IEEE, 2005: 807-814. DOI: 10.1109/CVPR.2005.56.
doi: 10.1109/CVPR.2005.56
|
[10] |
KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression[C]// Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice:IEEE, 2017: 66-75. DOI: 10.1109/ICCV.2017.17.
doi: 10.1109/ICCV.2017.17
|
[11] |
ŽBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA: IEEE, 2015: 1592-1599. DOI: 10.1109/CVPR.2015.7298767.
doi: 10.1109/CVPR.2015.7298767
|
[12] |
ALBANWAN H, QIN R. Adaptive and non-adaptive fusion algorithms analysis for digital surface model generated using census and convolutional neural networks[J]// The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2021- XLIII-B2: 283-288. DOI: 10.5194/isprs-archives-XLIII-B2-2021-283-2021.
doi: 10.5194/isprs-archives-XLIII-B2-2021-283-2021
|
[13] |
QIN Rongjun. Automated 3D recovery from very high resolution multi-view satellite images[C]// Proceedings of Presented at the ASPRS Conference (IGTF) 2017. Baltimore, MD: [s.n.], 2017.
|
[14] |
CHEN Ruijin, GAO Wei. Color-guided depth map super-resolution using a dual-branch multi-scale residual network with channel interaction[J]. Sensors, 2020, 20(6): 1560. DOI: 10.3390/s20061560.
doi: 10.3390/s20061560
|
[15] |
DONG Weisheng, SHI Guangming, LI Xin, et al. Color-guided depth recovery via joint local structural and nonlocal low-rank regularization[J]. IEEE Transactions on Multimedia, 2017, 19(2): 293-301. DOI: 10.1109/TMM.2016.2613824.
doi: 10.1109/TMM.2016.2613824
|
[16] |
PO L M, XU Xuyuan, ZHU Yuesheng, et al. Automatic 2D-to-3D video conversion technique based on depth-from-motion and color segmentation[C]// Proceedings of IEEE 10th International Conference on Signal Processing Proceedings. Beijing: IEEE, 2010: 1000-1003. DOI: 10.1109/ICOSP.2010.5655850.
doi: 10.1109/ICOSP.2010.5655850
|
[17] |
QI Fei, HAN Junyu, WANG Pengjin, et al. Structure guided fusion for depth map inpainting[J]. Pattern Recognition Letters, 2013, 34(1): 70-76. DOI: 10.1016/j.patrec.2012.06.003.
doi: 10.1016/j.patrec.2012.06.003
|
[18] |
PAPPAS T N, JAYANT N S. An adaptive clustering algorithm for image segmentation[C]// Proceedings of International Conference on Acoustics, Speech, and Signal Processing. Glasgow: IEEE, 1989: 1667-1670. DOI: 10.1109/ICASSP.1989.266767.
doi: 10.1109/ICASSP.1989.266767
|
[19] |
BOSCH M, KURTZ Z, HAGSTROM S, et al. A multiple view stereo benchmark for satellite imagery[C]// Proceedings of 2016 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). Washington, WA: IEEE, 2016: 1-9. DOI: 10.1109/AIPR.2016.8010543.
doi: 10.1109/AIPR.2016.8010543
|
[20] |
LE SAUX B, YOKOYA N, HÄNSCH R, et al. Data fusion contest 2019 (DFC2019)[M]. [S.l.]:IEEE DataPort, 2019. DOI: 10.21227/C6TM-VW12.
doi: 10.21227/C6TM-VW12
|
[21] |
SCHARSTEIN D, SZELISKI R, ZABIH R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithm[C]// Proceedings of IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001). Kauai: IEEE, 2001: 131-140. DOI: 10.1109/SMBV.2001.988771.
doi: 10.1109/SMBV.2001.988771
|
[22] |
HAMID M S, MANAP N A, HAMZAH R A, et al. Stereo matching algorithm based on deep learning: a survey[J]. Journal of King Saud University - Computer and Information Sciences, 2022, 34(5): 1663-1673. DOI: 10.1016/j.jksuci.2020.08.011.
doi: 10.1016/j.jksuci.2020.08.011
|
[23] |
LAGA H. A survey on deep learning architectures for image-based depth reconstruction[EB/OL]. [2022-10-12]. https://arxiv.org/abs/1906.06113.
|
[24] |
ZHOU Kun, MENG Xiangxi, CHENG Bo. Review of stereo matching algorithms based on deep learning[J]. Computational Intelligence and Neuroscience, 2020, 2020: 8562323. DOI: 10.1155/2020/8562323.
doi: 10.1155/2020/8562323
|
[25] |
HAN Yilong, LIU Wei, HUANG Xu, et al. Stereo dense image matching by adaptive fusion of multiple-window matching results[J]. Remote Sensing, 2020, 12(19): 3138. DOI: 10.3390/rs12193138.
doi: 10.3390/rs12193138
|
[26] |
HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 328-341. DOI: 10.1109/TPAMI.2007.1166.
doi: 10.1109/TPAMI.2007.1166
pmid: 18084062
|
[27] |
MA Li, LI Jingjiao, MA Ji, et al. A modified census transform based on the neighborhood information for stereo matching algorithm[C]// Proceedings of 2013 Seventh International Conference on Image and Graphics. Qingdao: IEEE, 2013: 533-538. DOI: 10.1109/ICIG.2013.113.
doi: 10.1109/ICIG.2013.113
|
[28] |
QIN Rongjun. A critical analysis of satellite stereo pairs for digital surface model generation and a matching quality prediction model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 139-150. DOI: 10.1016/j.isprsjprs.2019.06.005.
doi: 10.1016/j.isprsjprs.2019.06.005
|
[29] |
PAPASAIKA H, KOKIOPOULOU E, BALTSAVIAS E, et al. Fusion of digital elevation models using sparse representations[C]// Proceedings of ISPRS Conference on Photogrammetric Image Analysis. Munich: Springer, 2011: 171-184.
|
[30] |
GRUEN A, AKCA D. Least squares 3D surface and curve matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(3): 151-174. DOI: 10.1016/j.isprsjprs.2005.02.006.
doi: 10.1016/j.isprsjprs.2005.02.006
|
[31] |
SHEN Huanfeng, LI Xinghua, CHENG Qing, et al. Missing information reconstruction of remote sensing data: a technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3): 61-85. DOI: 10.1109/MGRS.2015.2441912.
doi: 10.1109/MGRS.2015.2441912
|
[32] |
TOU J T, GONZALEZ R C. Pattern recognition principles[M]. London: Addison-Wesley, 1974.
|
[33] |
QIN R. Rpc stereo processor (RSP)—a software package for digital surface model and orthophoto generation from satellite stereo imagery[C]// Proceedings of ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague: [s.n.], 2016: 77-82. DOI: 10.5194/isprs-annals-III-1-77-2016.
doi: 10.5194/isprs-annals-III-1-77-2016
|