Journal of Geodesy and Geoinformation Science ›› 2021, Vol. 4 ›› Issue (3): 38-48.doi: 10.11947/j.JGGS.2021.0304
• Special Issue • Previous Articles Next Articles
Xiaochen WANG1(),Hongchao MA1(),Liang ZHANG2,Zhan CAI3,Haichi MA1
Received:
2020-09-15
Accepted:
2021-01-15
Online:
2021-09-20
Published:
2021-10-09
Contact:
Hongchao MA
E-mail:xchwang@whu.edu.cn;hchma@whu.edu.cn
About author:
Xiaochen WANG (1998—), male, master, majors in airborne LiDAR point cloud and waveform data processing. E-mail: Supported by:
Xiaochen WANG,Hongchao MA,Liang ZHANG,Zhan CAI,Haichi MA. Point Cloud Classification and Accuracy Analysis Based on Feature Fusion[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 38-48.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Accuracy assessment of non-selective fusion classification results based on waveform features and point cloud features"
Predicted label | ||||||
---|---|---|---|---|---|---|
Ground | Low-vegetation | High-vegetation | Building | Omission/(%) | ||
True label | Ground | 132844 | 1664 | 214 | 1745 | 2.65 |
Low-vegetation | 2951 | 29488 | 198 | 409 | 10.77 | |
High-vegetation | 8 | 251 | 9932 | 33 | 2.86 | |
Building | 1017 | 338 | 83 | 11770 | 10.89 | |
Commission/(%) | 2.91 | 7.10 | 4.75 | 15.67 | — | |
Overall accuracy: 95.4% Kappa coefficient: 0.90 |
Tab.2
Statistics of experimental results"
Point cloud | Waveform | Point cloud& waveform | Relief-F (first 14 features) | TerraScan | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅰ | Ⅱ | Ⅰ | Ⅱ | Ⅰ | Ⅱ | Ⅰ | Ⅱ | |||||
Ground | 4.03 | 3.22 | 7.45 | 13.23 | 2.65 | 2.91 | 3.12 | 2.56 | 26.5 | 1.63 | ||||
Low-vegetation | 11.8 | 8.56 | 33.5 | 30.86 | 10.7 | 7.10 | 8.73 | 7.81 | 5.59 | 55.32 | ||||
High-vegetation | 2.59 | 4.56 | 63.6 | 32.65 | 2.86 | 4.75 | 3.23 | 4.64 | 8.21 | 16.45 | ||||
Building | 11.7 | 23.75 | 48.1 | 31.92 | 10.9 | 15.67 | 11.9 | 17.88 | 26.5 | 1.74 | ||||
Overall accuracy /(%) | 94.20 | 82.33 | 95.40 | 95.31 | 78.07 |
[1] | ELIZAROV V V, GRISHKANICH A S, KASCHEEV S V, et al. Lidar scanning module for remote environmental monitoring[C]//Proceedings of 2016 International Conference Laser Optics. St. Petersburg, Russia: IEEE, 2016. |
[2] |
DONG Weihua, LAN Jianhang, LIANG Shunlin, et al. Selection of LiDAR geometric features with adaptive neighborhood size for urban land cover classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,60:99-110.
doi: 10.1016/j.jag.2017.04.003 |
[3] | SHAN Jie, TOTH C K. Topographic laser ranging and scanning: Principles and processing[M]. Boca Raton, FL: CRC Press, 2009: 3-7. |
[4] |
LUO Shezhou, WANG Cheng, XI Xiaohuan, et al. Fusion of airborne discrete-return LiDAR and hyperspectral data for land cover classification[J]. Remote Sensing, 2016,8(1):3.
doi: 10.3390/rs8010003 |
[5] |
SANKEY T, DONAGER J, MCVAY J, et al. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA[J]. Remote Sensing of Environment, 2017,195:30-43.
doi: 10.1016/j.rse.2017.04.007 |
[6] |
AWAD M M. Toward robust segmentation results based on fusion methods for very high resolution optical image and LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(5):2067-2076.
doi: 10.1109/JSTARS.4609443 |
[7] |
POLIYAPRAM V, WANG Weimin, NAKAMURA R. A point-wise LiDAR and image multimodal fusion network (PMNet) for aerial point cloud 3D semantic segmentation[J]. Remote Sensing, 2019,11(24):2961.
doi: 10.3390/rs11242961 |
[8] |
WANG Xue, LI Peijun. Extraction of urban building damage using spectral, height and corner information from VHR satellite images and airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,159:322-336.
doi: 10.1016/j.isprsjprs.2019.11.028 |
[9] |
NORMAN M, SHAFRI H Z M, MANSOR S, et al. Fusion of multispectral imagery and LiDAR data for roofing materials and roofing surface conditions assessment[J]. International Journal of Remote Sensing, 2020,41(18):7090-7111.
doi: 10.1080/01431161.2020.1754493 |
[10] | CAO Qiong, MA Ailong, ZHONG Yanfei, et al. Urban classification by multi-feature fusion of hyperspectral image and LiDAR data[J]. Journal of Remote Sensing, 2019,23(5):892-903. |
[11] |
WANG Minye, LIU Rufei, LU Xiushan, et al. The use of mobile lidar data and Gaofen-2 image to classify roadside trees[J]. Measurement Science and Technology, 2020,31(12):125005.
doi: 10.1088/1361-6501/aba322 |
[12] |
NGUYEN T H, DANIEL S, GUÉRIOT D, et al. Super-resolution-based snake model-an unsupervised method for large-scale building extraction using airborne LiDAR data and optical image[J]. Remote Sensing, 2020,12(11):1702.
doi: 10.3390/rs12111702 |
[13] | OZKAN S, AKAR G B. Hyperspectral data to relative lidar depth: An inverse problem for remote sensing[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach, CA: IEEE, 2019. |
[14] |
BRUGGISSER M, RONCAT A, SCHAEPMAN M E, et al. Retrieval of higher order statistical moments from full-waveform LiDAR data for tree species classification[J]. Remote Sensing of Environment, 2017,196:28-41.
doi: 10.1016/j.rse.2017.04.025 |
[15] |
ZORZI S, MASET E, FUSIELLO A, et al. Full-waveform airborne LiDAR data classification using convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(10):8255-8261.
doi: 10.1109/TGRS.36 |
[16] |
MARSELIS S M, ABERNETHY K, ALONSO A, et al. Evaluating the potential of full‐waveform lidar for mapping pan-tropical tree species richness[J]. Global Ecology and Biogeography, 2020,29(10):1799-1816.
doi: 10.1111/geb.v29.10 |
[17] |
YANG Xuebo, WANG Cheng, XI Xiaohuan, et al. Extraction of multiple building heights using ICESat/GLAS full-waveform data assisted by optical imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(12):1914-1918.
doi: 10.1109/LGRS.2019.2911967 |
[18] |
LAI Xudong, YUAN Yifei, LI Yongxu, et al. Full-waveform LiDAR point clouds classification based on wavelet support vector machine and ensemble learning[J]. Sensors, 2019,19(14):3191.
doi: 10.3390/s19143191 |
[19] |
SHINOHARA T, XIU Haoyi, MATSUOKA M. FWNet: Semantic segmentation for full-waveform LiDAR data using deep learning[J]. Sensors, 2020,20(12):3568.
doi: 10.3390/s20123568 |
[20] | MALLET C, SOERGEL U, BRETAR F. Analysis of full-waveform lidar data for classification of urban areas[J]. Photogrammetrie Fernerkundung Geoinformation, 2008,5(5):337-349. |
[21] |
MALLET C, BRETAR F. Full-waveform topographic lidar: State-of-the-art[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009,64(1):1-16.
doi: 10.1016/j.isprsjprs.2008.09.007 |
[22] | RONCAT A, WAGNER W, MELZER T, et al. Echo detection and localization in full-waveform airborne laser scanner data using the averaged square difference function estimator[J]. The Photogrammetric Journal of Finland, 2008,21(1):62-75. |
[23] |
WAGNER W, ULLRICH A, DUCIC V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006,60(2):100-112.
doi: 10.1016/j.isprsjprs.2005.12.001 |
[24] |
JUTZI B, STILLA U. Range determination with waveform recording laser systems using a Wiener Filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006,61(2):95-107.
doi: 10.1016/j.isprsjprs.2006.09.001 |
[25] |
WU Jiaying, VAN AARDT J A N, ASNER G P. A comparison of signal deconvolution algorithms based on small-footprint LiDAR waveform simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(6):2402-2414.
doi: 10.1109/TGRS.2010.2103080 |
[26] | KOMA Z, KOENIG K, HÖFLE B. Urban tree classification using full-waveform airborne laser scanning[C]//Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic: ISPRS, 2016: 185-192. |
[27] |
MA Hongchao, ZHOU Weiwei, ZHANG Liang. DEM refinement by low vegetation removal based on the combination of full waveform data and progressive TIN densification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,146:260-271.
doi: 10.1016/j.isprsjprs.2018.09.009 |
[28] |
ALEXANDER C, TANSEY K, KADUK J, et al. Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(5):423-432.
doi: 10.1016/j.isprsjprs.2010.05.002 |
[29] | WEINMANN M, JUTZI B, MALLET C. Semantic 3D scene interpretation: A framework combining optimal neighborhood size selection with relevant features[C]//Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Zurich, Switzerland: ISPRS, 2014: 181-188. |
[30] |
GUO Bo, HUANG Xianfeng, ZHANG Fan, et al. Classification of airborne laser scanning data using JointBoost[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,100:71-83.
doi: 10.1016/j.isprsjprs.2014.04.015 |
[31] |
DONG Weihua, LAN Jianhang, LIANG Shunlin, et al. Selection of LiDAR geometric features with adaptive neighborhood size for urban land cover classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,60:99-110.
doi: 10.1016/j.jag.2017.04.003 |
[32] |
GRESSIN A, MALLET C, DEMANTKÉ J, et al. Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,79:240-251.
doi: 10.1016/j.isprsjprs.2013.02.019 |
[33] |
BREIMAN L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[34] |
MALLET C, BRETAR F, ROUX M, et al. Relevance assessment of full-waveform lidar data for urban area classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(S6):S71-S84.
doi: 10.1016/j.isprsjprs.2011.09.008 |
[35] | CAI Zhan, MA Hongchao, ZHANG Liang. Feature selection for airborne LiDAR data filtering: A mutual information method with Parzon window optimization[J]. GIScience & Remote Sensing, 2020,57(3):323-337. |
[36] | LI Xiaolan. The study and application of feature selection algorithms based on relief[D]. Dalian: Dalian University of Technology, 2013. |
[37] | KONONENKO I. Estimating attributes: Analysis and extensions of RELIEF[C]//Proceedings of the European Conference on Machine Learning. Italy: Springer, 1994. |
[38] | KIRA K, RENDELL L A. A practical approach to feature selection[C]//Proceedings of the Ninth International Workshop on Machine Learning. Aberdeen, Scotland: Morgan Kaufmann Publishers Inc., 1992. |
[39] | MA Hongchao, CAI Zhan, ZHANG Liang. Comparison of the filtering models for airborne LiDAR data by three classifiers with exploration on model transfer[J]. Journal of Applied Remote Sensing, 2018,12(1):016021. |
[1] | Juntao YANG,Zhizhong KANG,Zhou YANG. A Robust Model Fitting-based Method for Transmission Line Extraction from Airborne LiDAR Point Cloud Data [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 60-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||