Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (4): 13-26.doi: 10.11947/j.JGGS.2023.0402
Previous Articles Next Articles
Rui GUO(), Yuanlong SONG, Zhengyao WANG
Received:
2023-07-20
Accepted:
2023-11-03
Online:
2023-12-20
Published:
2024-02-06
About author:
Rui GUO E-mail: guoruirui@stu.xjtu.edu.cn
Rui GUO, Yuanlong SONG, Zhengyao WANG. Disordered Multi-view Registration Method Based on the Soft Trimmed Deep Network[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 13-26.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.2
Registration results of different network architectures on partially overlapping point clouds"
Method | MSE(R) | RMSE(R) | MAE(R) | MSE(t) | RMSE(t) | MAE(t) |
---|---|---|---|---|---|---|
DCP | 68.9832 | 8.3056 | 5.8239 | 0.0075 | 0.0868 | 0.0621 |
PPF+DCP | 69.0410 | 8.3090 | 5.8677 | 0.2925 | 0.5408 | 0.4631 |
STDCP(PPF+WEB) | 43.8167 | 6.6194 | 4.4551 | 0.0032 | 0.0571 | 0.0444 |
Tab.4
Accuracy and time comparison results of three algorithms on the Stanford dataset"
Dataset | Initial | K-means | UFR | HKCA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ER | ER | Time/s | ER | Time/s | ER | Time/s | ||||||||
Bunny | 0.2482 | 2.1745 | 0.2557 | 2.2798 | 3.56 | 0.1099 | 5.5634 | 71.95 | 0.0024 | 0.2817 | 67.25 | |||
Dragon | 0.2010 | 2.6085 | 0.1611 | 2.1748 | 6.16 | 0.0073 | 0.2222 | 115.63 | 0.0467 | 3.3971 | 134.21 | |||
Buddha | 0.2005 | 1.4144 | 0.1819 | 1.3845 | 13.88 | 0.1291 | 2.1861 | 315.69 | 0.0081 | 0.2631 | 307.60 | |||
Armadillo | 0.0234 | 2.5333 | 0.0066 | 2.3207 | 5.51 | 0.0237 | 4.2915 | 116.26 | 0.0090 | 0.2603 | 118.04 | |||
Hand | 0.0282 | 0.4945 | 0.0059 | 0.4615 | 93.52 | 0.0262 | 1.3390 | 366.59 | 0.0150 | 2.0203 | 354.26 | |||
Angel | 0.0021 | 2.0388 | 0.0056 | 0.9789 | 122.21 | 0.0103 | 2.8651 | 448.56 | 0.0016 | 0.2750 | 398.32 |
Tab.5
Registration results of different network architectures on partially overlapping point clouds"
Method | T/min | |||
---|---|---|---|---|
TMM | 0.9482 | 0.5675 | 64.5078 | 2201.8662 |
JRMPC | 0.9855 | 0.8254 | 55.6487 | 1899.4756 |
GAR | 1.7378 | 0.9904 | 42.8177 | 1460.6972 |
PFR | 0.6131 | 0.4164 | 21.0576 | 718.4151 |
UDMR | 1.1183 | 0.4001 | 1.9707 | 67.2339 |
SDUR | 0.7966 | 0.4218 | 2.0803 | 71.3164 |
Tab.6
The experimental results of different algorithms under different datasets"
Algorithm | Bunny/mm | Dragon/mm | Buddha/mm | Armadillo/mm | ||
---|---|---|---|---|---|---|
TMM | eR | 0.0098 | 0.0854 | 0.0982 | 0.4255 | |
et | 0.4558 | 0.8521 | 0.3655 | 0.7564 | ||
T(sec) | 412.2544 | 455.2216 | 396.2654 | 462.3659 | ||
JRMPC | eR | 0.0106 | 0.1122 | 0.1251 | 0.7524 | |
et | 0.6012 | 0.6140 | 0.5411 | 0.9655 | ||
T(sec) | 148.6520 | 221.1434 | 219.4438 | 236.3211 | ||
GAR | eR | 1.7976 | 2.0746 | 1.8677 | 1.3654 | |
et | 2.0341 | 2.6085 | 3.4144 | 1.5665 | ||
T(sec) | 390.1257 | 312.5756 | 310.8075 | 362.5866 | ||
PFR | eR | 0.3524 | 0.0256 | 0.0282 | 0.0209 | |
et | 0.9234 | 0.5254 | 0.6038 | 0.0884 | ||
T(sec) | 263.1661 | 228.3519 | 347.7545 | 253.2158 | ||
UDMR | eR | 0.0068 | 1.4109 | 0.3593 | 0.0518 | |
et | 0.5491 | 1.6267 | 1.3551 | 0.0878 | ||
T(sec) | 70.1742 | 56.8803 | 59.4323 | 68.5433 | ||
SDUR | eR | 0.0024 | 0.0467 | 0.0081 | 0.0074 | |
et | 0.2817 | 0.7971 | 0.2631 | 0.0091 | ||
T(sec) | 67.2500 | 134.2112 | 307.6000 | 29.3230 |
[1] | AO Ying, LI Penglong, WEN Li, et al. Fully convolutional networks for street furniture identification in panorama images[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 59-71. DOI: 10.11947/j.JGGS.2022.0406. |
[2] |
ZHANG Junxiang, LI Peiran, ZHANG Haoran, et al. Investigation on the relationship between population density and satellite image features—a deep learning based approach[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 50-58.
doi: 10.11947/j.JGGS.2022.0405 |
[3] | BAI Xuyang, LUO Zixin, ZHOU Lei, et al. D3feat: joint learning of dense detection and description of 3D local features[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2020: 6358-6366. |
[4] | DENG Haowen, BIRDAL T, ILIC S. PPFNet: global context aware local features for robust 3D point matching[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, UT: IEEE, 2018: 195-205. |
[5] | WANG Yanjun, LI Shaochun, WANG Mengjie, et al. A simple deep learning network for classification of 3D mobile LiDAR point clouds[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 49-59. DOI: 10.11947/j.JGGS.2021.0305. |
[6] |
VIZZO I, GUADAGNINO T, MERSCH B, et al. KISS-ICP:in defense of point-to-point ICP-simple, accurate, and robust registration if done the right way[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 1029-1036.
doi: 10.1109/LRA.2023.3236571 |
[7] |
HUANG Lulu, HUAGN Xiang, LI Shuanggao. Research on ERS point registration of large-size measurement field based on neural network non-uniform temperature field[J]. Robotic Intelligence and Automation, 2023, 43(2): 175-190.
doi: 10.1108/RIA-12-2022-0271 |
[8] |
LI Qing, WANG Cheng, WEN Chenglu, et al. DeepSIR: deep semantic iterative registration for LiDAR point clouds[J]. Pattern Recognition, 2023, 137:109306.
doi: 10.1016/j.patcog.2023.109306 |
[9] |
XU Siyu, ZHU Jihua, JIANG Zutao, et al. Multi-view registration of unordered range scans by fast correspondence propagation of multi-scale descriptors[J]. PLoS One, 2018, 13(9): e0203139.
doi: 10.1371/journal.pone.0203139 |
[10] |
YANG Zixin, SIMON R, LINTE C A. Learning feature descriptors for pre- and intra-operative point cloud matching for laparoscopic liverregistration[J]. International Journal of Computer Assisted Radiology and Surgery, 2023, 18(6): 1025-1032.
doi: 10.1007/s11548-023-02893-3 pmid: 37079248 |
[11] | ZHANG Ning, JIN Shaohua, BIAN Gang, et al. An iterative and adaptive registration method for multi-beam and side-scan sonar images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1951-1958. DOI: 10.11947/j.AGCS.2022.20210023. |
[12] |
CAO Hualong, WANG Haifeng, ZHANG Ni, et al. Robust probability model based on variational Bayes for point setregistration[J]. Knowledge-Based Systems, 2022, 241: 108182.
doi: 10.1016/j.knosys.2022.108182 |
[13] | LI Cailin, WANG Zhiyong, YU lulu, et al. Geometric registration of close-range optical image and terrestrial laser point cloud constrained by nearest surface[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 1014-1022. DOI: 10.11947/j.AGCS.2020.20190146. |
[14] |
ZHU Jihua, JIANG Zutao, EVANGELIDIS G D, et al. Efficient registration of multi-view point sets by K-means clustering[J]. Information Sciences, 2019, 488: 205-218.
doi: 10.1016/j.ins.2019.03.024 |
[15] |
EVANGELIDIS G D, HORAUD R. Joint alignment of multiple point sets with batch and incremental expectation-maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6): 1397-1410.
doi: 10.1109/TPAMI.2017.2717829 pmid: 28644798 |
[16] |
RAVIKUMAR N, GOOYA A, ÇIMEN S, et al. Group-wise similarity registration of point sets using Student̓s t-mixture model for statistical shape models[J]. Medical Image Analysis, 2018, 44: 156-176.
doi: 10.1016/j.media.2017.11.012 |
[17] |
ZHU Jihua, ZHU li, LI Zhongyu, et al. Automatic multi-view registration of unordered range scans without feature extraction[J]. Neurocomputing, 2016, 171: 1444-1453.
doi: 10.1016/j.neucom.2015.07.055 |
[18] |
ZHU Jihua, MENG Deyu, LI Zhongyu, et al. Robust registration of partially overlapping point sets via genetic algorithm with growth operator[J]. IET Image Processing, 2014, 8(10): 582-590.
doi: 10.1049/ipr2.v8.10 |
[19] | CHARLES R Q, HAO Su, MO Kaichun, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, 2017: 77-85. |
[20] | QI C R, YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA: ACM, 2017: 5105-5114. |
[21] | AOKI Y, GOFORTH H, SRIVATSAN R A, et al. PointNetLK: Robust & efficient point cloud registration using PointNet[C]//Proceedings of IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA: IEEE, 2019: 7156-7165. |
[22] | LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. San Francisco, CA: ACM, 1981: 674-679. |
[23] | WANG Yue, SOLOMON J. Deep closest point: learning representations for point cloud registration[C]//Proceedings of International Conference on Computer Vision. Seoul: IEEE, 2019: 3522-3531. |
[24] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA: ACM, 2017: 6000-6010. |
[25] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Minneapolis, MN: ACL, 2019: 4171-4186. |
[26] | The Stanford 3D Scanning Repository[EB/OL]. [2023-04-06]. http://graphics.stanford.edu/data/3Dscanrep/. |
[27] | Queen’s University. Queen’s Range Image and 3-D Model Database[EB/OL]. [2023-04-06]. https://rcvlab.engineering.queensu.ca/database/. |
[28] | The University of Western Australia. The UWA 3D Modeling Dataset[EB/OL]. [2023-04-06]. http://www.csse.uwa.edu.au/-ajmal/3Dmodeling.html. |
[1] | Chen DENG,Xiong YOU,Weiwei ZHANG,Meixia ZHI,Diao LIN,Wang XU. A Vision-aided Localization and Geo-registration Method for Urban ARGIS Based on 2D Maps [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(3): 93-110. |
[2] | Xiaopeng YAN,Wei ZHOU,Rencan PENG,Wenliang PAN,Lei WANG,Guoxin HU. A Local Reference Frame Construction Method Based on the Signed Surface Variation [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 25-37. |
[3] | Yusheng XU,Rong HUANG,Xiaohua TONG,Uwe STILLA. Exploiting Robust Estimators in Phase Correlation of 3D Point Clouds for 6 DoF Pose Estimation [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 72-90. |
[4] | Yueqian SHEN,Jinguo WANG,Jinhu WANG,Wei DUAN,Vagner G. FERREIRA. Methodology for Extraction of Tunnel Cross-Sections Using Dense Point Cloud Data [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 56-71. |
[5] | Zan ZHU, Shu GAN, Jianqi WANG, Nijia QIAN. A Novel Airborne 3D Laser Point Cloud Hole Repair Algorithm Considering Topographic Features [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 29-38. |
[6] | Li YAN,Jicheng DAI,Junxiang TAN,Hua LIU,Changjun CHEN. Global Fine Registration of Point Cloud in LiDAR SLAM Based on Pose Graph [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 26-35. |
[7] | Bin LI,Xiaofa ZHAO,Yong CHEN,Junbo WEI,Lu WANG,Bochao MA. Three Dimensional Laser Point Cloud Slicing Method for Calculating Irregular Volume [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(4): 31-43. |
[8] | Liangpei ZHANG,Yun ZHANG,Zhenzhong CHEN,Peipei XIAO,Bin LUO. Splitting and Merging Based Multi-model Fitting for Point Cloud Segmentation [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 78-89. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||