Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (1): 59-75.doi: 10.11947/j.JGGS.2023.0105
Previous Articles Next Articles
Pu YAN1,2(),Yue FANG1,2,Jie CHEN1,2,Gang WANG1,2,Qingwei TANG1,2
Received:
2022-05-07
Accepted:
2022-10-25
Online:
2023-03-20
Published:
2023-05-04
About author:
Pu YAN E-mail: Supported by:
Pu YAN,Yue FANG,Jie CHEN,Gang WANG,Qingwei TANG. Automated Extraction for Water Bodies Using New Water Index from Landsat 8 OLI Images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 59-75.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.4
The statistics of indicators of the three WIs by two methods in four study areas"
Study area | Method | WI | OA/(%) | UA/(%) | PA/(%) | kappa |
---|---|---|---|---|---|---|
Qingtongxia area | OTSU | NDWI | 96.95 | 94.64 | 55.77 | 0.6869 |
MNDWI | 97.10 | 93.25 | 59.31 | 0.7106 | ||
NWI | 97.13 | 71.99 | 90.90 | 0.7882 | ||
NSAM | NDWI | 95.15 | 59.50 | 77.57 | 0.6477 | |
MNDWI | 93.83 | 51.31 | 83.17 | 0.6030 | ||
NWI | 98.58 | 86.31 | 92.75 | 0.8866 | ||
Chaohu (area1) | OTSU | NDWI | 86.75 | 18.27 | 79.68 | 0.2546 |
MNDWI | 91.63 | 26.95 | 80.69 | 0.3709 | ||
NWI | 91.83 | 28.87 | 90.49 | 0.4061 | ||
NSAM | NDWI | 98.55 | 95.98 | 61.21 | 0.7404 | |
MNDWI | 98.47 | 85.04 | 68.68 | 0.7521 | ||
NWI | 99.00 | 98.31 | 72.86 | 0.8319 | ||
Chaohu (area2) | OTSU | NDWI | 95.65 | 58.71 | 90.31 | 0.6892 |
MNDWI | 96.79 | 67.18 | 89.81 | 0.7518 | ||
NWI | 96.85 | 66.17 | 96.35 | 0.7682 | ||
NSAM | NDWI | 98.78 | 90.94 | 88.24 | 0.8892 | |
MNDWI | 99.26 | 97.90 | 89.42 | 0.9308 | ||
NWI | 99.55 | 97.10 | 95.30 | 0.9595 | ||
Shouxian area | OTSU | NDWI | 98.69 | 97.53 | 82.03 | 0.8853 |
MNDWI | 98.50 | 97.62 | 74.68 | 0.8385 | ||
NWI | 98.80 | 86.56 | 92.77 | 0.8893 | ||
NSAM | NDWI | 99.27 | 97.54 | 89.11 | 0.9275 | |
MNDWI | 99.28 | 97.07 | 89.75 | 0.9289 | ||
NWI | 99.42 | 96.56 | 92.82 | 0.9434 |
Tab.5
The statistics of indicators of the seven methods in four study areas"
Study area | Method | OA/(%) | UA/(%) | PA/(%) | kappa |
---|---|---|---|---|---|
Qingtongxia area | ML | 97.34 | 89.78 | 66.23 | 0.7485 |
SVM | 97.38 | 89.56 | 67.13 | 0.7539 | |
K-means | 97.74 | 82.84 | 81.90 | 0.8116 | |
OTSU | 97.13 | 71.99 | 90.90 | 0.7882 | |
GVE_OTSU | 97.47 | 76.32 | 88.44 | 0.8044 | |
Entropy_OTSU | 97.33 | 72.40 | 94.68 | 0.8064 | |
NSAM | 98.58 | 86.31 | 92.75 | 0.8866 | |
Chaohu (area1) | ML | 96.39 | 48.96 | 63.94 | 0.5361 |
SVM | 97.27 | 85.00 | 27.06 | 0.4004 | |
K-means | 88.19 | 21.46 | 88.65 | 0.3063 | |
OTSU | 91.83 | 28.87 | 90.49 | 0.4061 | |
GVE_OTSU | 94.11 | 35.76 | 84.92 | 0.4774 | |
Entropy_OTSU | 93.71 | 34.94 | 91.43 | 0.4791 | |
NSAM | 99.00 | 98.31 | 72.86 | 0.8319 | |
Chaohu (area2) | ML | 98.54 | 96.92 | 77.87 | 0.8559 |
SVM | 96.58 | 65.06 | 91.74 | 0.7435 | |
K-means | 94.58 | 52.41 | 95.85 | 0.6508 | |
TSU | 96.85 | 66.17 | 96.35 | 0.7682 | |
GVE_OTSU | 97.58 | 72.48 | 95.70 | 0.8121 | |
Entropy_OTSU | 97.75 | 73.49 | 97.11 | 0.8248 | |
NSAM | 99.55 | 97.10 | 95.30 | 0.9595 | |
Shouxian area | ML | 98.72 | 91.58 | 84.61 | 0.8728 |
SVM | 98.68 | 90.30 | 85.32 | 0.8705 | |
K-means | 98.22 | 86.06 | 80.88 | 0.8245 | |
OTSU | 98.80 | 86.56 | 92.77 | 0.8893 | |
GVE_OTSU | 98.89 | 89.82 | 90.13 | 0.8939 | |
Entropy_OTSU | 99.06 | 89.42 | 94.17 | 0.9124 | |
NSAM | 99.42 | 96.56 | 92.82 | 0.9434 |
Tab.6
Small water bodies extraction indicators of the seven methods in four study areas"
Study area | Method | kappa | Com/(%) | Cor/(%) | Qua/(%) |
---|---|---|---|---|---|
Qingtongxia area | ML | 0.3928 | 26.03 | 84.83 | 23.90 |
SVM | 0.4273 | 29.52 | 81.64 | 26.13 | |
K-means | 0.6189 | 53.22 | 76.09 | 39.88 | |
OTSU | 0.6736 | 75.47 | 62.23 | 39.39 | |
GVE_OTSU | 0.6727 | 68.64 | 67.27 | 41.15 | |
Entropy_OTSU | 0.7716 | 86.52 | 70.61 | 50.30 | |
NSAM | 0.8468 | 92.83 | 78.52 | 61.56 | |
Chaohu (area1) | ML | 0.4519 | 57.71 | 39.49 | 20.85 |
SVM | 0.2916 | 18.68 | 74.78 | 16.60 | |
K-means | 0.2488 | 87.38 | 16.81 | 9.06 | |
OTSU | 0.3375 | 88.63 | 23.00 | 12.78 | |
GVE_OTSU | 0.4047 | 82.57 | 28.88 | 16.30 | |
Entropy_OTSU | 0.4076 | 89.66 | 29.39 | 16.64 | |
NSAM | 0.8049 | 69.08 | 97.65 | 66.86 | |
Chaohu (area2) | ML | 0.4628 | 34.31 | 72.69 | 27.30 |
SVM | 0.2756 | 58.81 | 19.02 | 9.79 | |
K-means | 0.2226 | 77.40 | 13.98 | 7.35 | |
OTSU | 0.3468 | 79.95 | 23.03 | 12.61 | |
GVE_OTSU | 0.3999 | 76.45 | 27.94 | 15.47 | |
Entropy_OTSU | 0.4481 | 82.74 | 31.50 | 18.01 | |
NSAM | 0.8132 | 79.32 | 83.73 | 60.69 | |
Shouxian area | ML | 0.4291 | 39.77 | 47.80 | 21.29 |
SVM | 0.4104 | 39.69 | 43.67 | 19.62 | |
K-means | 0.1798 | 16.48 | 21.58 | 7.50 | |
OTSU | 0.6132 | 72.46 | 53.83 | 32.31 | |
GVE_OTSU | 0.6362 | 73.21 | 56.27 | 34.88 | |
Entropy_OTSU | 0.7092 | 74.95 | 67.86 | 43.83 | |
NSAM | 0.8128 | 80.21 | 82.77 | 60.13 |
[1] |
MEHMOOD H, CONWAY C, PERERA D. Mapping of flood areas using Landsat with Google Earth engine cloud platform[J]. Atmosphere, 2021, 12(7): 866.
doi: 10.3390/atmos12070866 |
[2] | BRIANT J, CLAIRE H, MATHIAS S, et al. Water resource monitoring exploiting sentinel-2 satellite and sentinel-2 satellite like time series; application in Yangtze River water bodies[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 41-49. |
[3] | ZHAO Yajie, WANG Lihui, KONG Xiangbing, et al. Land use classification based on data fusion of Sentinel-2 and Landsat 8 OLI[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(2): 248-255. |
[4] |
RUNDQUIST D C, LAWSON M P, QUEEN L P, et al. The relationship between summer-season rainfall events and lake-surface area[J]. Journal of the American Water Resources Association, 1987, 23(3): 493-508.
doi: 10.1111/jawr.1987.23.issue-3 |
[5] | FANG Gang. Automatic extraction of water body information based on Landsat 8 satellite OLI image[J]. Chinese Journal of Soil Science, 2015, 46(6): 1284-1288. |
[6] |
LU D, WENG Q. A survey of image classification methods and techniques for improving classification performance[J]. International Journal of Remote Sensing, 2007, 28(5): 823-870.
doi: 10.1080/01431160600746456 |
[7] |
AHMAD A, SUFAHANI S F. Analysis of Landsat 5 TM data of Malaysian land covers using ISODATA clustering technique[C]//Proceedings of 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics. Melaka, Malaysia: IEEE, 2012: 92-97. DOI: 10.1109/APACE.2012.6457639.
doi: 10.1109/APACE.2012.6457639 |
[8] | PRIYA M G. Supervised classification for flood extent identification using Sentinel-1 radar data[C]//Proceedings of the 39th Asian Conference on Remote Sensing. Kuala Lumpur:[s.n.], 2018: 3277-3284. |
[9] |
PAUL A, TRIPATHI D, DUTTA D. Application and comparison of advanced supervised classifiers in extraction of water bodies from remote sensing images[J]. Sustainable Water Resources Management, 2018, 4(4): 905-919.
doi: 10.1007/s40899-017-0184-6 |
[10] |
QI Yanan, DOU Hongtao, WANG Zhaoming. An adaptive threshold selected method from remote sensing image based on water index[J]. Journal of Physics: Conference Series, 2022, 2228(1): 012001.
doi: 10.1088/1742-6596/2228/1/012001 |
[11] |
JIANG Wei, NI Yuan, PANG Zhiguo, et al. An effective water body extraction method with new water index for Sentinel-2 imagery[J]. Water, 2021, 13(12): 1647.
doi: 10.3390/w13121647 |
[12] | RAD A M, KREITLER J, SADEGH M. Augmented normalized difference water index for improved surface water monitoring[J]. Environmental Modelling & Software, 2021, 140: 105030. |
[13] |
XIONG Longhai, DENG Ruru, LI Jun, et al. Subpixel Surface Water Extraction (SSWE) using Landsat 8 OLI data[J]. Water, 2018, 10(5): 653. DOI: 10.3390/w10050653.
doi: 10.3390/w10050653 |
[14] |
YANG Fan, GUO Jianhua, TAN Hai, et al. Automated extraction of urban water bodies from ZY-3 multi-spectral imagery[J]. Water, 2017, 9(2): 144. DOI: 10.3390/w9020144.
doi: 10.3390/w9020144 |
[15] |
YANG Xiucheng, ZHAO Shanshan, QIN Xuebin, et al. Mapping of urban surface water bodies from sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening[J]. Remote Sensing, 2017, 9(6): 596. DOI: 10.3390/rs9060596.
doi: 10.3390/rs9060596 |
[16] |
WU Bo, ZHANG Jinmu, ZHAO Yindi. A novel method to extract narrow water using a top-hat white transform enhancement technique[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(3): 391-400. DOI: 10.1007/s12524-018-0910-z.
doi: 10.1007/s12524-018-0910-z |
[17] |
ZHOU Sulong, KAN Pengyu, SILBERNAGEL J, et al. Application of image segmentation in surface water extraction of freshwater lakes using radar data[J]. ISPRS International Journal of Geo-Information, 2020, 9(7): 424. DOI: 10.3390/ijgi9070424.
doi: 10.3390/ijgi9070424 |
[18] |
ZHANG Guoqing, ZHENG Guoxiong, GAO Yang, et al. Automated water classification in the Tibetan Plateau using Chinese GF-1 WFV data[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(7): 509-519. DOI: 10.14358/pers.83.7.509.
doi: 10.14358/pers.83.7.509 |
[19] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man,and Cybernetics, 1979, 9(1): 62-66.
doi: 10.1109/TSMC.1979.4310076 |
[20] | YAN Mingzhong, HUANG Bingyi, ZHU Daqi, et al. A novel segmentation method based on grayscale wave for underwater images[J]. International Journal of Robotics and Automation, 2018, 33(6): 386-393. |
[21] |
LIANG Jiayong, LIU Desheng. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 53-62. DOI: 10.1016/j.isprsjprs.2019.10.017.
doi: 10.1016/j.isprsjprs.2019.10.017 |
[22] |
JIANG Xiaoyi, MOJON D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(1): 131-137.
doi: 10.1109/TPAMI.2003.1159954 |
[23] |
ÖZELKAN E. Water body detection analysis using NDWI indices derived from Landsat-8 OLI[J]. Polish Journal of Environmental Studies, 2020, 29(2): 1759-1769. DOI: 10.15244/pjoes/110447.
doi: 10.15244/pjoes/110447 |
[24] |
FEYISA GL, MEILBY H, FENSHOLT R, et al. Automated water extraction index: a new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140: 23-35.
doi: 10.1016/j.rse.2013.08.029 |
[25] |
LIU Yongxue, CHEN Xiaoyu, YANG Yuhao, et al. Automated extraction and mapping for desert Wadis from Landsat imagery in arid West Asia[J]. Remote Sensing, 2016, 8(3): 246.
doi: 10.3390/rs8030246 |
[26] |
HU Jiuxiang, RAZDAN A, FEMIANI J C, et al. Road network extraction and intersection detection from aerial images by tracking road footprints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 4144-4157. DOI: 10.1109/TGRS.2007.906107.
doi: 10.1109/TGRS.2007.906107 |
[27] |
JIANG Hao, FENG Min, ZHU Yunqiang, et al. An automated method for extracting rivers and lakes from Landsat imagery[J]. Remote Sensing, 2014, 6(6): 5067-5089.
doi: 10.3390/rs6065067 |
[28] |
TRUONG M T N, KIM S. Automatic image thresholding using Otsu’s method and entropy weighting scheme for surface defect detection[J]. Soft Computing, 2018, 22(13): 4197-4203.
doi: 10.1007/s00500-017-2709-1 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||