Journal of Geodesy and Geoinformation Science ›› 2022, Vol. 5 ›› Issue (2): 49-59.doi: 10.11947/j.JGGS.2022.0206
• Special Issue • Previous Articles Next Articles
Lai CHEN(),Chaogui KANG,Chao YANG()
Received:
2021-11-01
Accepted:
2022-04-27
Online:
2022-06-20
Published:
2022-07-22
Contact:
Chao YANG
E-mail:691522985@qq.com;yangchao@cug.edu.cn
About author:
Lai CHEN, E-mail: Supported by:
Lai CHEN,Chaogui KANG,Chao YANG. Understanding Citizens’emotion States under the Urban Livability Environment through Social Media Data: a Case Study of Wuhan[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 49-59.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
City liveability indicators and contents"
Indicators | Contents (Part of) | ||
---|---|---|---|
Urban livability indicators | Education | Primary school, high school, college | |
Medical services | hospital, clinic | ||
Public facilities | Park, museum, green land | ||
Leisure places | Entertainment venues, leisure places | ||
Employment | State-owned enterprise, private enterprise | ||
Transportation | Road networks |
Tab.3
Evaluation criteria for urban livability"
(a) Scores for each factor | |||
Target layer(A) | Standard level (B) | Points | |
City livability | Transportation(B1) | 6 | |
Leisure places(B2) | 3 | ||
Public facilities(B3) | 6 | ||
Education(B4) | 3 | ||
Medical and health(B5) | 3 | ||
Employment(B6) | 6 | ||
(b) The judgment criteria for relative importance | |||
Points | Meaning | ||
1 | It means that the two factors are equally important | ||
3 | Indicates that the two factors are slightly more important than the former | ||
5 | Indicates that the two factors are significantly more important than the former | ||
7 | It means that the two factors are more important than the former | ||
9 | Indicates that the two factors are extremely important than the former | ||
2、4、6、8 | Represents the intermediate value of the above judgment adjacent |
Tab.5
Text examples and the predicted sentiment value"
Original Weibo text | Emotional label | Sentiment value |
---|---|---|
01. Someone still remembers my birthday. Although it is a trivial matter, it is still quite touching. | Pos | 0.90 |
02. It’s been a long time since I drank coffee, it’s a bit uncomfortable http:t.cn/R2WJAOc | Neg | 0.03 |
03. My friend went to Hokkaido to take photos in Japan. It’s so beautiful, I really want to go to Japan... [Poor] http://t.cn/R2dUAgX | Pos | 0.76 |
04. Good luck in July [rabbit]#hello July # http://t.cn/R2dUAD3 | Pos | 0.99 |
05. The random process reveals a profound truth in life, the theorem is understood, but still unable to solve the problem. http://t.cn/R2dUAgX | Neg | 0.03 |
06.Commemorating our passing freshman...http://t.cn/R2dUAgX 08.Walking in the wind, the sunshine today is suddenly so gentle. http://t.cn/R2dUAdW | Pos | 0.3 |
07. Finally finished the exam, I will go for an internship in September [bye bye] http://t.cn/R2W6Cf2 | Pos | 0.4 |
08. I get off work at this point every day, I’m so heartbroken [tears][tears][tears] walked one hour late http:t.cn/R2WizXv | Neg | 0.15 |
09. The most annoying subject to remember! It’s better to come and die with a few big calculations http:t.cn/R2WJAOc | Neg | 0.08 |
10. Starving to death, I can finally start [Love you] http://t.cn/R2WJAOc | Pos | 0.91 |
Tab.6
The sentiment score of the Wuhan center areas"
Month/Sentiment /Livability | 0.8 | 0.7 | 0.6 | 0.4 | 0.3 | 0.2 | 0.1 |
---|---|---|---|---|---|---|---|
July | 0.622048086 | 0.584285542 | 0.604534759 | 0.5918511 | 0.591565259 | 0.596968836 | 0.591196159 |
August | 0.607341453 | 0.600065735 | 0.607163893 | 0.598646226 | 0.596299265 | 0.599214975 | 0.607726681 |
September | 0.632570395 | 0.612159069 | 0.623388392 | 0.610309986 | 0.605881312 | 0.600574751 | 0.594594415 |
October | 0.614452335 | 0.601816715 | 0.610842382 | 0.604210412 | 0.606043845 | 0.594352301 | 0.606557954 |
November | 0.608129838 | 0.602335827 | 0.603550958 | 0.596710015 | 0.597571673 | 0.59410649 | 0.595820528 |
December | 0.610841312 | 0.627765816 | 0.62350732 | 0.623779926 | 0.637242491 | 0.617307527 | 0.604396059 |
July—Dec. Average value | 0.615897236 | 0.604738117 | 0.612164617 | 0.6042512775 | 0.605767307 | 0.600420813 | 0.6000486326 |
[1] |
WU Zhen, CHEN Ruishan, MEADOWS M E, et al. Changing urban green spaces in Shanghai: trends, drivers and policy implications[J]. Land Use Policy, 2019, 87: 104080.
doi: 10.1016/j.landusepol.2019.104080 |
[2] | HIGASA T. Urban planning[M]. Tokyo: Kioritz Corporation Press, 1977. |
[3] |
ZHANG Wenzhong. The core framework of the livable city construction[J]. Geographical Research, 2016, 35(2): 205-213.
doi: 10.11821/dlyj201602001 |
[4] |
LIANG Li, DENG Xiangzheng, WANG Pei, et al. Assessment of the impact of climate change on cities livability in China[J]. Science of the Total Environment, 2020, 726: 138339.
doi: 10.1016/j.scitotenv.2020.138339 |
[5] |
ZHU Likai, GUO Yuanyuan, ZHANG Chi, et al. Assessing community-level livability using combined remote sensing and internet-based big geospatial data[J]. Remote Sensing, 2020, 12(24): 4026.
doi: 10.3390/rs12244026 |
[6] |
KAKLAUSKAS A, ZAVADSKAS E K, RADZEVICIENE A, et al. Quality of city life multiple criteria analysis[J]. Cities, 2018, 72: 82-93.
doi: 10.1016/j.cities.2017.08.002 |
[7] | CONGER B W. On livability, liveability and the limited utility of quality-of-life rankings[J]. SPP Communique, 2015, 7(4):1-8. |
[8] |
OKULICZ-KOZARYN A. City life: rankings (livability) versus perceptions (satisfaction)[J]. Social Indicators Research, 2013, 110(2): 433-451.
doi: 10.1007/s11205-011-9939-x |
[9] |
KASHEF M. Urban livability across disciplinary and profes-sional boundaries[J]. Frontiers of Architectural Research, 2016, 5(2): 239-253.
doi: 10.1016/j.foar.2016.03.003 |
[10] |
ZHU Zhenjun, LI Zhigang, CHEN Hongsheng, et al. Subjective well-being in China: how much does commuting matter?[J]. Transportation, 2019, 46(4): 1505-1524.
doi: 10.1007/s11116-017-9848-1 |
[11] |
LIN Sainan, LI Zhigang. Residential satisfaction of migrants in Wenzhou, an ordinary city of China[J]. Habitat International, 2017, 66: 76-85.
doi: 10.1016/j.habitatint.2017.05.004 |
[12] |
REN Honghao, FOLMER H. Determinants of residential satisfaction in urban China: a multi-group structural equation analysis[J]. Urban Studies, 2017, 54(6): 1407-1425.
doi: 10.1177/0042098015627112 |
[13] |
ZHAN Dongsheng, KWAN M P, ZHANG Wenzhong, et al. Assessment and determinants of satisfaction with urban livability in China[J]. Cities, 2018, 79: 92-101.
doi: 10.1016/j.cities.2018.02.025 |
[14] |
ETTEMA D, SMAJIC I. Walking, places and wellbeing[J]. The Geographical Journal, 2015, 181(2): 102-109.
doi: 10.1111/geoj.12065 |
[15] | CATTELL V, DINES N, GESLER W, et al. Mingling, observing, and lingering: everyday public spaces and their implications for well-being and social relations[J]. Health & Place, 2008, 14(3): 544-561. |
[16] |
MACKERRON G, MOURATO S. Happiness is greater in natural environments[J]. Global Environmental Change, 2013, 23(5): 992-1000.
doi: 10.1016/j.gloenvcha.2013.03.010 |
[17] |
JIM C Y, CHEN W Y. Perception and attitude of residents toward urban green spaces in Guangzhou (China)[J]. Environmental Management, 2006, 38(3): 338-349.
doi: 10.1007/s00267-005-0166-6 |
[18] |
GUNNARSSON B, KNEZ I, HEDBLOM M, et al. Effects of biodiversity and environment-related attitude on perception of urban green space[J]. Urban Ecosystems, 2017, 20(1): 37-49.
doi: 10.1007/s11252-016-0581-x |
[19] |
HEDBLOM M, GUNNARSSON B, IRAVANI B, et al. Reduction of physiological stress by urban green space in a multisensory virtual experiment[J]. Scientific Reports, 2019, 9: 10113.
doi: 10.1038/s41598-019-46099-7 |
[20] |
YUE Lin, CHEN Weitong, LI Xue, et al. A survey of sentiment analysis in social media[J]. Knowledge and Information Systems, 2019, 60(2): 617-663.
doi: 10.1007/s10115-018-1236-4 |
[21] | YOUNIS E M G. Sentiment analysis and text mining for social media microblogs using open source tools: an empirical study[J]. International Journal of Computer Applications, 2015, 112(5): 44-48. |
[22] |
ZUNIC A, CORCORAN P, SPASIC I. Sentiment analysis in health and well-being: systematic review[J]. JMIR Medical Informatics, 2020, 8(1): e16023.
doi: 10.2196/16023 |
[23] | KHAN R, SHRIVASTAVA P, KAPOOR A, et al. Social media analysis with AI: sentiment analysis techniques for the analysis of twitter COVID-19 data[J]. Journal of Critical Reviews, 2020, 7(9): 2761-2774. |
[24] | CAMBRIA E, LI Yang, XING F Z, et al. SenticNet 6: ensemble application of symbolic and subsymbolic AI for sentiment analysis[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. [S.l.]: ACM, 2020: 105-114. |
[25] |
ZHU Likai, GUO Yuanyuan, ZHANG Chi, et al. Assessing community-level livability using combined remote sensing and internet-based big geospatial data[J]. Remote Sensing, 2020, 12(24): 4026.
doi: 10.3390/rs12244026 |
[26] |
HEMMATIAN F, SOHRABI M K. A survey on classification techniques for opinion mining and sentiment analysis[J]. Artificial Intelligence Review, 2019, 52(3): 1495-1545.
doi: 10.1007/s10462-017-9599-6 |
[27] |
TSYTSARAU M, PALPANAS T. Survey on mining subjective data on the web[J]. Data Mining and Knowledge Discovery, 2012, 24(3): 478-514.
doi: 10.1007/s10618-011-0238-6 |
[28] |
GUPTA I, JOSHI N. Feature-based twitter sentiment analysis with improved negation handling[J]. IEEE Transactions on Computational Social Systems, 2021, 8(4): 917-927.
doi: 10.1109/TCSS.2021.3069413 |
[29] |
PANDEY A C, RAJPOOT D S, SARASWAT M. Twitter sentiment analysis using hybrid cuckoo search method[J]. Information Processing & Management, 2017, 53(4): 764-779.
doi: 10.1016/j.ipm.2017.02.004 |
[30] |
KUMAR A, SRINIVASAN K, CHENG W H, et al. Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data[J]. Information Processing & Management, 2020, 57(1): 102141.
doi: 10.1016/j.ipm.2019.102141 |
[31] |
WANG Gang, ZHANG Zhu, SUN Jianshan, et al. POS-RS: a random subspace method for sentiment classification based on part-of-speech analysis[J]. Information Processing & Management, 2015, 51(4): 458-479.
doi: 10.1016/j.ipm.2014.09.004 |
[32] |
PLUNZ R A, ZHOU Yijia, VINTIMILLA M I C, et al. Twitter sentiment in New York City parks as measure of well-being[J]. Landscape and Urban Planning, 2019, 189: 235-246.
doi: 10.1016/j.landurbplan.2019.04.024 |
[33] |
ILIEVA R T, MCPHEARSON T. Social-media data for urban sustainability[J]. Nature Sustainability, 2018, 1(10): 553-565.
doi: 10.1038/s41893-018-0153-6 |
[34] |
LEE K Y. Factors influencing urban livability in Seoul, Korea: urban environmental satisfaction and neighborhood relations[J]. Social Sciences, 2021, 10(4): 138.
doi: 10.3390/socsci10040138 |
[35] |
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Journal of Geodesy and Geoinformation Science, 2018, 47(6): 693-704. DOI: 10.11947/j.AGCS.2018.20170640.
doi: 10.11947/j.AGCS.2018.20170640 |
[36] |
LI Mingxiao, ZHANG Hengcai, QIU Peiyuan, et al. A moving object trajectory prediction algorithm based on fuzzy long-term and short-term neural network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12): 1660-1669. DOI: 10.11947/j.AGCS.2018.20170268.
doi: 10.11947/j.AGCS.2018.20170268 |
[37] |
LIU Qinhao, ZHANG Yonghong, DENG Min, et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404. DOI: 10.11947/j.AGCS.2021.20200038.
doi: 10.11947/j.AGCS.2021.20200038 |
[38] |
LI Jing, LIU Haiyan, GUO Wenyue, et al. A spatio-temporal network for human activity prediction based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 522-531. DOI: 10.11947/j.AGCS.2021.20200230.
doi: 10.11947/j.AGCS.2021.20200230 |
[39] | CAI Wei, CAI Hongxin, WANG Haoxian. The spatial evaluation of urban residential suitability based on ArcGIS[J]. Geomatics & Spatial Information Technology, 2014, 37(9): 161-164. |
[40] |
HU Huiming, QIAN Haizhong, HE Haiwei, et al. Auto-selection of areal habitation based on analytic hierarchy process[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6): 740-746. DOI: 10.11947/j.AGCS.2016.20150078.
doi: 10.11947/j.AGCS.2016.20150078 |
[41] |
SAATY T L. Decision making—the analytic hierarchy and network processes (AHP/ANP)[J]. Journal of Systems Science and Systems Engineering, 2004, 13(1): 1-35.
doi: 10.1007/s11518-006-0151-5 |
[42] | Jieba: Chinese Text Segmentation[EB/OL].[2022-04-15]. https://github.com/fxsjy/jieba . |
[1] | Jiawei ZHANG,Hua QI. Data Mining and Spatial Analysis of Social Media Text Based on the BERT-CNN Model to Achieve Situational Awareness: a Case Study of COVID-19 [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 38-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||