Journal of Geodesy and Geoinformation Science ›› 2021, Vol. 4 ›› Issue (4): 74-83.doi: 10.11947/j.JGGS.2021.0406
Previous Articles Next Articles
Li LIU1(),Qingfeng XU2(),Hui GU1,Lei ZHOU1,Zhenfu LIU1,Lili CAO1
Received:
2020-01-20
Accepted:
2020-05-16
Online:
2021-12-20
Published:
2021-12-30
Contact:
Qingfeng XU
E-mail:liuli_sast@163.com;xuqfster@126.com
About author:
Li LIU (1978—), female, senior engineer, engaged in develop satellite T.T.&C. and payload electronics.E-mail: Supported by:
Li LIU,Qingfeng XU,Hui GU,Lei ZHOU,Zhenfu LIU,Lili CAO. Aeromagnetic Compensation Algorithm Based on Levenberg-Marquard Neural Network[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 74-83.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
The input features of subnetworks"
Subnetwork | Function | Features | Input layer dimension | Hidden layer dimension |
---|---|---|---|---|
Z1 | Hsq | t | 3 | 1 |
Z2 | Hloc | φ×θ * | 6 | 3 |
Z3 | Hperm | cosα, cosβ, cosγ | 9 | 4 |
Z4 | Hind | cosα2, cosαcosβ, cosαcosγ, cosβ2,cosβcosγ | 15 | 7 |
Z5 | Heddy | cosαcosα', cosαcosβ', cosαcosγ', cosβcosα', cosβcosβ', cosβcosγ', cosγcosα', cosγcosβ' | 24 | 12 |
Z6 | Hg | dφ,dθ | 6 | 3 |
Tab.2
LM algorithm flow"
Input training set, and set MSE goal, minimum gradient, regularization coefficient μ, etc. | |
---|---|
Initialize network connection weights and thresholds. | |
Iterate | ① Compute the output error Er of all inputs with the current weights and biases. |
② Compute the sum of the square differences Sse corresponding to all inputs. | |
③ Compute the jacobian matrix:H=J(se)T×J(se).* | |
④ Compute the gradient:g=J(se)T×Er. | |
⑤ Compute the adjustment value of the gradient:Δg=(H+Iμ)-1g. **. | |
⑥ Recompute Sse with g+Δg:if Sse goes down then decreases μ and goes to step ①, and if Sse goes up then increases μ and goes to step ⑤. | |
↑No | Whether the stop condition MSE goal, minimum gradient, or maximum epochs is reached. |
Yes→ | Stop training, and output the weights, biases and training parameters. |
Tab.6
Standard deviation of compensationnT"
Experiment code | Standard Deviation of Raw data | Standard Deviation of LS compensation | Standard Deviation of networks Z3—Z5 compensation | Standard Deviation of all networks compensation |
---|---|---|---|---|
UAV-2 | 17.8126 | 1.1256 | 0.9324 | 0.5004 |
UAV-3 | 41.1538 | 0.7028 | 0.4856 | 0.4855 |
SCSS-1 | 191.8949 | 23.0391 | 0.7030 | 0.6018 |
SCSS-2 | 118.0897 | 45.7260 | 5.6801 | 1.0443 |
[1] | TOLLEY W E, LAWSON J D. Magnetic compensation of MAD equipped aircraft[R]. Mineola, N.Y.: Airborne Instruments Lab. Inc., 1950. |
[2] | LELIAK P. Identification andevaluation of magnetic-field sources of magnetic airborne detector equipped aircraft[J]. IRE Transactions on Aerospace & Navigational Electronics, 1961,ANE- 8(3):95-105. |
[3] | LEACH B W. Aeromagnetic compensation as a linear regression problem[M]// Information Linkage between Applied Mathematics and Industry. New York: Academic Press, 1980: 139-161. |
[4] | BICKEL S H. Small signal compensation of magnetic fields resulting from aircraft maneuvers[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, AES- 15(4):518-525. |
[5] |
ZHANG Jian, DENG Peng, LIN Chunsheng. Research on aircraft magnetic compensation based on improved singular value decomposition[J]. Applied Mechanics and Materials, 2013, 281:41-46.
doi: 10.4028/www.scientific.net/AMM.281 |
[6] | DOU Zhenjia, REN Kexin, HAN Qi, et al. A novel real-time aeromagnetic compensation method based on RLSQ[C]// 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Kitakyushu, Japan: IEEE, 2014: 243-246. |
[7] | ZHENG Wenchao, NIU Xiamu, HAN Qi. An improved solution algorithm of magnetic composition[J]. Intelligent Computer and Applications, 2014, 4(1):91-93. |
[8] | ZHANG Dailei, HUANG Danian, LU Junwei, et al. Aeromagnetic compensation with partial least square regression[C]// ASEG Extended Abstracts. Adelaide, Australia: Taylor&Francis Group, 2016, 1:1-3. |
[9] | ZHAO Guanyi, SHAO Yuqing, HAN Qi, et al. A novel aeromagnetic compensation method based on the improved recursive least-squares[C]// Proceeding of the Twelfth International Conference on Intelligent Information Hiding and Multimedia Signal Processing Kaohsiung, Taiwan, China: Springer, 2017: 171-178. |
[10] | ZHANG Jian, LIN Chunsheng, ZHOU Jianjun. Application of wavelet threshold denoising and ridge estimation in aircraft magnetic compensation[J]. Journal of Hubei University (Natural Science Edition), 2012, 34(2):134-137, 141. |
[11] | WU Peilin, ZHANG Qunying, CHEN Luzhao, et al. Optimization aeromagnetic compensation method based on power spectrum estimation[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(5):689-695. |
[12] |
DOU Zhenjia, HAN Qi, NIU Xiamu, et al. An adaptive filter for aeromagnetic compensation based on wavelet multiresolution analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(8):1069-1073.
doi: 10.1109/LGRS.2016.2565685 |
[13] |
ZHOU Jianjun, LIN Chunsheng, CHEN Hao. A method for aircraft magnetic interference compensation based on small signal model and LMS algorithm[J]. Chinese Journal of Aeronautics, 2014, 27(6):1578-1585.
doi: 10.1016/j.cja.2014.10.025 |
[14] | WILLIAMS P M. Aeromagnetic compensation using neural networks[J]. Neural Computing & Applications, 1993, 1(3):207-214. |
[15] |
WU Peilin, ZHANG Qunying, FEI Chunjiao, et al. Aeromagnetic gradient compensation method for helicopter based on ε-support vector regression algorithm[J]. Journal of Applied Remote Sensing, 2017, 11(2):025012.
doi: 10.1117/1.JRS.11.025012 |
[16] |
MA Ming, CHENG Defu, CHALUP S, et al. Uncertainty estimation in the neural model for aeromagnetic compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12):1942-1947.
doi: 10.1109/LGRS.2018.2864239 |
[17] |
MA Ming, ZHOU Zhijian, CHENG Defu. A dual estimate method for aeromagnetic compensation[J]. Measurement Science and Technology, 2017, 28(11):115904.
doi: 10.1088/1361-6501/aa883b |
[18] | GUI Zhiting. Geomagnetic and ionospheric wave propagation[M]. Wuhan: Wuhan University Press, 1986: 38-42. |
[19] | TAN Bin, LIN Chunsheng, ZHANG Ning, et al. Impacts of geomagnetic gradient on solving precision of aircraft magnetic field[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12):1482-1485. |
[20] |
HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.
doi: 10.1016/0893-6080(89)90020-8 |
[21] |
MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441.
doi: 10.1137/0111030 |
[22] |
HAGAN M T, MENHAJ M B. Training feedforward Networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks, 1994, 5(6):989-993.
doi: 10.1109/72.329697 |
[23] |
BARRON A R. Universal approximation bounds for superpositions of a sigmoidal function[J]. IEEE Transactions on Information Theory, 1993, 39(3):930-945.
doi: 10.1109/TIT.18 |
[24] |
DINGANKAR A T. The unreasonable effectiveness of neural network approximation[J]. IEEE Transactions on Automatic Control, 1999, 44(11):2043-2044.
doi: 10.1109/9.802912 |
[1] | Zhaohui XUE,Xiangyu NIE. Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization for Hyperspectral Image Classification [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 73-90. |
[2] | Yongwei GU,Qingming GUI,Xuan ZHANG,Songhui HAN. Iterative Solution of Regularization to Ill-conditioned Problems in Geodesy and Geophysics [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 59-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||