[1] |
HUANG Weibin. Modern Adjustment Theory and Its Application [M]. Beijing: PLA Publishing House, 1992.
|
[2] |
YANG Yuanxi. Adaptive Navigation and Kinematic Positioning [M]. Beijing: Surveying and Mapping Press, 2006.
|
[3] |
YANG Yuanxi, HE Haibo, XU Guochang . Adaptively Robust Filtering for Kinematic Geodetic Positioning[J]. Journal of geodesy, 2001,75(2):109-116.
doi: 10.1007/s001900000157
|
[4] |
LI Bofeng. Theory and Method of Parameter Estimation in Mixed Integer GNSS Model [M]. Beijing: Surveying and Mapping Press, 2014.
|
[5] |
LI Bofeng, ZHANG Zhetao, SHEN Yunzhong , et al. A Procedure for the Significance Testing of Unmodeled Errors in GNSS Observations[J]. Journal of Geodesy, 2018: 1171-1186.
|
[6] |
ZHANG Zhetao, LI Bofeng, SHEN Yunzhong . Comparison and Analysis of Unmodelled Errors in GPS and BeiDou Signals[J]. Geodesy and Geodynamics, 2017,8(1), 41-48.
doi: 10.1016/j.geog.2016.09.005
|
[7] |
GAZIT R . Digital Tracking Filters with High Order Correlated Measurement Noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997,33(1):171-177.
doi: 10.1109/7.570736
|
[8] |
HUANG Xianyuan, SUI Lifen, FAN Pengpai . A New Approach for Colored Measurement Noises by Correcting Random Model[J]. Geomatics and Information Science of Wuhan University, 2008,33(6):644-647.
|
[9] |
LIN Xu, LUO Zhicai, XU Chuang , et al. Autocovariance Least Squares Estimation for Colored Noise[J]. Acta Geodaetica et Cartographica Sinica, 2013,42(6):804-809.
|
[10] |
YANG Yuanxi, XU Tianhe . An Adaptive Kalman Filter Combining Variance Component Estimation with Covariance Matrix Estimation Based on Moving Window[J]. Geomatics and Information Science of Wuhan University, 2003,28(6):714-718.
|
[11] |
CUI Xianqiang, YANG Yuanxi, GAO Weiguang . Comparison of Adaptive Filter Arithmetics in Controlling Influence of Colored Noises[J]. Geomatics and Information Science of Wuhan University, 2006,31(8):731-735.
|
[12] |
SONG Yingchun, ZHU Jianjun, CHEN Zhengyang . Kalman Filter for Kinematic Positioning with Timing Correlated Observation Noises[J]. Acta Geodaetica et Cartographica Sinica, 2006,35(4):328-331.
|
[13] |
XUE Shuqiang, YANG Yuanxi . Adjustment Model and Colored Noise Compensation of Continuous Observation System[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(4):360-365.
|
[14] |
LI Bofeng . Stochastic Modeling of Triple-frequency BeiDou Signals: Estimation, Assessment and Impact Analysis[J]. Journal of Geodesy, 2016,90(7):593-610.
doi: 10.1007/s00190-016-0896-7
|
[15] |
HOWIND J, KUTTERER H, HECK B . Impact of temporal correlations on GPS-derived relative point positions[J]. Journal of Geodesy, 1999,73(5):246-258.
doi: 10.1007/s001900050241
|
[16] |
LI Bofeng, ZHANG Lei, VERHAGEN S . Impacts of BeiDou Stochastic Model on Reliability: Overall test, w-test and Minimal Detectable Bias[J]. GPS solutions, 2017,21(3):1095-1112.
doi: 10.1007/s10291-016-0596-z
|
[17] |
AMIRI-SIMKOEEI A, JAZAERI S, ZANGENEH-NEJAD F , et al. Role of Stochastic Model on GPS Integer Ambiguity Resolution Success Rate[J]. GPS solutions, 2016,20(1):51-61.
doi: 10.1007/s10291-015-0445-5
|
[18] |
CHANG Guobin . On Kalman Filter for Linear System with Colored Measurement Noise[J]. Journal of Geodesy, 2014,88(12):1163-1170.
doi: 10.1007/s00190-014-0751-7
|
[19] |
ZHAO Changsheng. Colored Noise Filtering Theory and Algorithms [M]. Beijing: Surveying and Mapping Press, 2011.
|
[20] |
PETOVELLO M, O’KEEFE K, LACHAPELLE G, et al. Consideration of Time-correlated Errors in a Kalman Filter Applicable to GNSS[J]. Journal of Geodesy, 2009,83(1):51-56.
doi: 10.1007/s00190-008-0231-z
|
[21] |
HU Guorong, OU Jikun . The Improved Method of Adaptive Kalman Filtering for GPS High Kinematic Positioning[J]. Acta Geodaetica et Cartographica Sinica, 1999,28(4):290-294.
|
[22] |
ZHAO Changsheng, TAO Benzao . Kalman Filtering of Linear System with Colored Noises[J]. Geomatics and Information Science of Wuhan University, 2008,33(2):180-182.
|
[23] |
BRYSON J, HENRIKSON L . Estimation Using Sampled Data Containing Sequentially Correlated Noise[J]. Journal of Spacecraft and Rockets, 1968,5(6):662-665.
doi: 10.2514/3.29327
|
[24] |
KERMARREC G, SCHÖN S. Taking Correlations in GPS Least Squares Adjustments into Account with a Diagonal Covariance Matrix[J]. Journal of Geodesy, 2016,90(9):793-805.
doi: 10.1007/s00190-016-0911-z
|
[25] |
BONA P. Precision, Cross Correlation , Time Correlation of GPS Phase and Code Observations[J]. GPS solutions, 2000,4(2):3-13.
doi: 10.1007/PL00012839
|
[26] |
LI B, SHEN Y, XU P . Assessment of Stochastic Models for GPS Measurements with Different Types of Receivers[J]. Chinese Science Bulletin, 2008,53(20):3219-3225.
|
[27] |
YANG Yuanxi, CUI Xianqiang . Influence Functions of Colored Noises on Kinematic Positioning—Taking the AR Model of First Class As an Example[J]. Acta Geodaetica et Cartographica Sinica, 2003,32(1):6-10.
|
[28] |
ASHCRAFT C, GRIMES R, LEWIS J . Accurate Symmetric Indefinite Linear Equation Solvers[J]. SIAM Journal on Matrix Analysis and Applications, 1998,20(2):513-561.
doi: 10.1137/S0895479896296921
|
[29] |
GUO Jianfeng, OU Jikun, REN Chao . Partial Continuation Model and Its Application in Mitigating Systematic Errors of Double-Differenced GPS Measurements[J]. Progress in Natural Science, 2005,15(3):246-251.
doi: 10.1080/10020070512331342060
|
[30] |
ZHANG Zhetao, LI Bofeng, SHEN Yunzhong . Efficient Approximation for a Fully Populated Variance-Covariance Matrix in RTK Positioning[J]. Journal of Surveying Engineering, 2018,144(4):04018005.
doi: 10.1061/(ASCE)SU.1943-5428.0000259
|
[31] |
El-RABBANY A . The Effect of Physical Correlations on the Ambiguity Resolution and Accuracy Estimation in GPS Differential Positioning [D]. Fredericton: Department of Geodesy and Geomatics Engineering, University of New Brunswick, 1994.
|