Journal of Geodesy and Geoinformation Science ›› 2024, Vol. 7 ›› Issue (1): 59-73.doi: 10.11947/j.JGGS.2024.0105
Previous Articles Next Articles
LUO Shaohua, DING Linfang, TEKLE Gebretsadik Mulubirhan, BRULAND Oddbjørn, FAN Hongchao
Published:
2024-03-25
Online:
2024-03-20
LUO Shaohua, DING Linfang, TEKLE Gebretsadik Mulubirhan, BRULAND Oddbjørn, FAN Hongchao. Flood Velocity Prediction Using Deep Learning Approach[J]. Journal of Geodesy and Geoinformation Science, 2024, 7(1): 59-73.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | MOSAVI A, OZTURK P, CHAU K W. Flood prediction using machine learning models: literature review[J]. Water, 2018, 10(11): 1536. |
[2] | OPOLOT E. Application of remote sensing and geographical information systems in flood management: a review[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6(10): 1884-1894. |
[3] | WEDAJO G K. LiDAR DEM Data for flood mapping and assessment; opportunities and challenges: a review[J]. Journal of Remote Sensing & GIS, 2017, 6(4): 1000211. |
[4] | SAKSENA S, MERWADE V. Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping[J]. Journal of Hydrology, 2015, 530: 180-194. |
[5] | AVAND M, KURIQI A, KHAZAEI M, et al. DEM resolution effects on machine learning performance for flood probability mapping[J]. Journal of Hydro-Environment Research, 2022, 40: 1-16. |
[6] | CHU Haibo, WU Wenyan, WANG Q J, et al. An ANN-based emulation modelling framework for flood inundation modelling: application, challenges and future directions[J]. Environmental Modelling & Software, 2020, 124: 104587. |
[7] | GUO Zifeng, MOOSAVI V, LEITÃO J P. Data-driven rapid flood prediction mapping with catchment generalizability[J]. Journal of Hydrology, 2022, 609: 127726. |
[8] | AHMED N, HOQUE M A A, ARABAMERI A, et al. Flood susceptibility mapping in Brahmaputra floodplain of Bangladesh using deep boost, deep learning neural network, and artificial neural network[J]. Geocarto International, 2022, 37(25): 8770-8791. |
[9] | LI Yuting, HONG Haoyuan. Modelling flood susceptibility based on deep learning coupling with ensemble learning models[J]. Journal of Environmental Management, 2023, 325: 116450. |
[10] | PHAM B T, LUU C, VAN PHONG T, et al. Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibilitymodeling?[J]. Journal of Hydrology, 2021, 592: 125615. |
[11] | RAMAYANTI S, NUR A S, SYIFA M, et al. Performance comparison of two deep learning models for flood susceptibility map in Beira area, Mozambique[J]. The Egyptian Journal of Remote Sensing and Space Science, 2022, 25(4): 1025-1036. |
[12] | FANG Zhice, WANG Yi, PENG Ling, et al. Predicting flood susceptibility using LSTM neural networks[J]. Journal of Hydrology, 2021, 594: 125734. |
[13] | PEREIRA J, MONTEIRO J, ESTIMA J, et al. Assessing flood severity from georeferenced photos[C]// Proceedings of the13th Workshop on Geographic Information Retrieval. Lyon: ACM, 2019: 5. |
[14] | KANTH A K, CHITRA P, SOWMYA G G. Deep learning-based assessment of flood severity using social media streams[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36(2): 473-493. |
[15] | LOHUMI K, ROY S. Automatic detection of flood severity level from flood videos using deep learning models[C]// Proceedings of the 5th International Conference on Information and Communication Technologies for Disaster Management. Sendai: IEEE, 2018: 1-7. |
[16] | Wikipedia. Melhus[EB/OL]. (2023-10-18). https://no.wikipedia.org/w/index.php?title=Melhus&oldid=23902207. |
[17] | BRUNNER G W, CEIWR-HEC H. River analysis system, 2D modeling user's manual version 5.0[M]. Davis, CA:US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Center, 2016. |
[18] | WEINMANN M, JUTZI B, MALLET C, et al. Geometric features and their relevance for 3D point cloud classification[C]// Proceedings of ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Hannover: ISPRS, 2017: 157-164. |
[19] | THOMAS H, GOULETTE F, DESCHAUD J E, et al. Semantic classification of 3D point clouds with multiscale spherical neighborhoods[C]// Proceedings of 2018 International Conference on 3D Vision. Verona: IEEE, 2018: 390-398. |
[20] | ATIK M E, DURAN Z, SEKER D Z. Machine learning-based supervised classification of point clouds using multiscale geometric features[J]. ISPRS International Journal of Geo-Information, 2021, 10(3): 187. |
[21] | Ion Zävoianu Chapter VII river length[J]. Developments in Water Science, 1985, 20: 114-134. |
[22] | ZHU Xiaoxiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8-36. |
[23] | GUO Yanming, LIU Yu, OERLEMANS A, et al. Deep learning for visual understanding: a review[J]. Neurocomputing, 2016, 187: 27-48. |
[24] | WU Yuchen, FENG Junwen. Development and application of artificial neural network[J]. Wireless Personal Communications, 2018, 102(2): 1645-1656. |
[25] | ZHANG Huaguang, WANG Zhanshan, LIU Derong. A comprehensive review of stability analysis of continuous-time recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(7): 1229-1262. |
[26] | TAUD H, MAS J F. Multilayer Perceptron (MLP)[M]//OLMEDO M T C, PAEGELOW M, MAS J F, et al. Geomatic Approaches for Modeling Land Change Scenarios. Cham: Springer, 2018: 451-455. |
[27] | SHARMA S, SHARMA S, ATHAIYA A. Activation functions in neural networks[J]. International Journal of Engineering Applied Sciences and Technology, 2020, 4(12): 310-316. |
[28] | WANG Qi, MA Yue, ZHAO Kun, et al. A comprehensive survey of loss functions in machine learning[J]. Annals of Data Science, 2022, 9(2): 187-212. |
[29] | SUN Ruoyu. Optimization for deep learning: theory and algorithms[EB/OL].[2024-01-24]. https://arxiv.org/abs/1912.08957. |
[30] |
CHICCO D, WARRENS M J, JURMAN G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[J]. PeerJ Computer Science, 2021, 7: e623.
doi: 10.7717/peerj-cs.623 pmid: 34307865 |
[1] | Tao CHENG,Yang ZHANG,James HAWORTH. Network SpaceTime AI: Concepts, Methods and Applications [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(3): 78-92. |
[2] | Kexian WANG,Shunyi ZHENG,Rui LI,Li GUI. A Deep Double-Channel Dense Network for Hyperspectral Image Classification [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. |
[3] | Yanjun WANG,Shaochun LI,Mengjie WANG,Yunhao LIN. A Simple Deep Learning Network for Classification of 3D Mobile LiDAR Point Clouds [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 49-59. |
[4] | Long SUN, Tao WU, Guangcai SUN, Dazheng FENG, Lieshu TONG, Mengdao XING. Object Detection Research of SAR Image Using Improved Faster Region-Based Convolutional Neural Network [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 18-28. |
[5] | Hao HE,Shuyang WANG,Shicheng WANG,Dongfang YANG,Xing LIU. A Road Extraction Method for Remote Sensing Image Based on Encoder-Decoder Network [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 16-25. |
[6] | Dazhao FAN,Yang DONG,Yongsheng ZHANG. Satellite Image Matching Method Based on Deep Convolutional Neural Network [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100. |
[7] | Jianya GONG,Shunping JI. Photogrammetry and Deep Learning [J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||