Journal of Geodesy and Geoinformation Science ›› 2024, Vol. 7 ›› Issue (1): 42-58.doi: 10.11947/j.JGGS.2024.0104
Previous Articles Next Articles
LI Haocheng1(), DONG Jie2, WANG Yi'an2, LIAO Mingsheng1
Published:
2024-03-25
Online:
2024-03-20
About author:
LI Haocheng, master student, majors in time series InSAR processing and distributed scatterers algorithm. E-mail: savic_whu@whu.edu.cn.
Supported by:
LI Haocheng, DONG Jie, WANG Yi'an, LIAO Mingsheng. Monitoring Surface Deformation Using Distributed Scatterers InSAR[J]. Journal of Geodesy and Geoinformation Science, 2024, 7(1): 42-58.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: squeeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470. |
[2] | GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9183-9191. |
[3] | MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142. |
[4] |
TROUVÉ E, CARAMMA M, MAîTRE H. Fringe detection in noisy complex interferograms[J]. Applied Optics, 1996, 35(20): 3799-3806.
doi: 10.1364/AO.35.003799 pmid: 21102777 |
[5] | SANDWELL D T, PRICE E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30183-30204. |
[6] | FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20. |
[7] | XIA Ye, KAUFMANN H, GUO Xiaofang. Differential SAR interferometry using corner reflectors[C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE, 2002. |
[8] | WERNER C, WEGMULLER U, STROZZI T, et al. Interferometric point target analysis for deformation mapping[C]// Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium (IEEE Cat No.03CH37477). Toulouse, France: IEEE, 2003. |
[9] | HOOPER A, ZEBKER H, SEGALL P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23): L23611. |
[10] | KAMPES B M, ADAM N. The STUN algorithm for persistent scatterer interferometry[C]// Proceedings of Fringe 2005 Workshop. Frascati, Italy: CDROM, 2005: 1-14. |
[11] | BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. |
[12] | ZHANG Lei, DING Xiaoli, LU Zhong. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1): 146-152. |
[13] | PERISSIN D, WANG Teng. Repeat-pass SAR interferometry with partially coherent targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 271-280. |
[14] | LANARI R, MORA O, MANUNTA M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1377-1386. |
[15] | HOOPER A. A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16): L16302. |
[16] | FORNARO G, VERDE S, REALE D, et al. CAESAR: an approach based on covariance matrix decomposition to improve multibaseline--multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2050-2065. |
[17] | CAO Ning, LEE H, JUNG H C. A phase-decomposition-based PSInSAR processing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1074-1090. |
[18] | SAMIEI-ESFAHANY S, MARTINS J E, VAN LEIJEN F V, et al. Phase estimation for distributed scatterers in InSAR stacks using integer least squares estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5671-5687. |
[19] | DONG Jie, ZHANG Lu, TANG Minggao, et al. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: a case study of Jiaju landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198. |
[20] | TANG Panpan, CHEN Fulong, GUO Huadong, et al. Large-area landslides monitoring using advanced multi-temporal InSAR technique over the Giant Panda Habitat, Sichuan, China[J]. Remote Sensing, 2015, 7(7): 8925-8949. |
[21] | LIAO Mingsheng, DONG Jie, LI Menghua, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1): 332-341. |
[22] | ZHANG Zhengjia, WANG Chao, TANG Yixian, et al. Subsidence monitoring in coal area using time-series InSAR combining persistent scatterers and distributed scatterers[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 49-55. |
[23] | DU Zheyuan, GE Linlin, LI Xiaojing, et al. Subsidence monitoring over the southern Coalfield, Australia using both L-band and C-band SAR time series analysis[J]. Remote Sensing, 2016, 8(7): 543. |
[24] | WANG Mingzhou, LI Tao, JIANG Liming. Monitoring reclaimed lands subsidence in Hong Kong with InSAR technique by persistent and distributed scatterers[J]. Natural Hazards, 2016, 82(1): 531-543. |
[25] | SUN Qishi, JIANG Liming, JIANG Mi, et al. Monitoring coastal reclamation subsidence in Hong Kong with distributed scatterer interferometry[J]. Remote Sensing, 2018, 10(11): 1738. |
[26] | WANG Yuanyuan, ZHU Xiaoxiang, BAMLER R. Retrieval of phase history parameters from distributed scatterers in urban areas using very high resolution SAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 89-99. |
[27] | SHI Guoqiang, LIN Hui, MA Peifeng. A hybrid method for stability monitoring in low-coherence urban regions using persistent and distributed scatterers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3811-3821. |
[28] | LIU Youfeng, FAN Hongdong, WANG Liang, et al. Monitoring of surface deformation in a low coherence area using distributed scatterers InSAR: case study in the Xiaolangdi Basin of the Yellow River, China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(1): 25-39. |
[29] | WU Wenqing, LIU Wenkai, HU Jun, et al. Investigating two-dimensional deformations of the head of the Central Route of the South--North Water Diversion Project in China with TerraSAR-X datasets[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2228457. |
[30] | XUE Feiyang, LYU Xiaolei, DOU Fangjia, et al. A review of time-series interferometric SAR techniques: a tutorial for surface deformation analysis[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(1): 22-42. |
[31] | LIN Hui, MA Peifeng, WANG Weixi. Urban Infrastructure health monitoring with spaceborne multi-temporal synthetic aperture radar Interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1421-1433. DOI: 10.11947/j.AGCS.2017.20170339. |
[32] | LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. |
[33] | PARIZZI A, BRCIC R. Adaptive InSAR stack multilooking exploiting amplitude statistics: a comparison between different techniques and practical results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 441-445. |
[34] | CAO Ning, LEE H, JUNG H C. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1838-1842. |
[35] | EVEN M, SCHULZ K. InSAR deformation analysis with distributed scatterers: a review complemented by new advances[J]. Remote Sensing, 2018, 10(5): 744. |
[36] | REIGBER A, MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142-2152. |
[37] | GOODMAN J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11): 1145-1150. |
[38] | GOODMAN N R. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)[J]. The Annals of Mathematical Statistics, 1963, 34(1): 152-177. |
[39] |
KURUOGLU E E, ZERUBIA J. Modeling SAR images with a generalization of the Rayleigh distribution[J]. IEEE Transactions on Image Processing, 2004, 13(4): 527-533.
pmid: 15376587 |
[40] | LEE J S, HOPPEL K W, MANGO S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017-1028. |
[41] | TOUZI R, LOPES A, BRUNIQUEL J, et al. Coherence estimation for SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 135-149. |
[42] | ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950-959. |
[43] | LEE J S. Digital image smoothing and the sigma filter[J]. Computer Vision, Graphics, and Image Processing, 1983, 24(2): 255-269. |
[44] | LEE J S, PAPATHANASSIOU K P, AINSWORTH T L, et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465. |
[45] | LOPES A, TOUZI R, NEZRY E. Adaptive speckle filters and scene heterogeneity[J]. IEEE transactions on Geoscience and Remote Sensing, 1990, 28(6): 992-1000. |
[46] |
CIUC M, BOLON P, TROUVé E, et al. Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images[J]. Applied optics, 2001, 40(32): 5954-5966.
pmid: 18364891 |
[47] | WANG Yuanyuan, ZHU Xiaoxiang, BAMLER R. Optimal estimation of distributed scatterer phase history parameters from meter-resolution SAR data[C]// Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE: Vancouver, BC, Canada, 2011. |
[48] | GOEL K, ADAM N. A distributed scatterer interferometry approach for precision monitoring of known surface deformation phenomena[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5454-5468. |
[49] | JIANG Mi, DING Xiaoli, LI Zhiwei, et al. InSAR coherence magnitude estimation based on data stack[J]. Chinese Journal of Geophysics, 2013, 56(3): 799-811. |
[50] | ZHANG Yunjun, XIE Chou, SHAO Yun, et al. Adaptive spatial filtering of interferometric data stack oriented to distributed scatterers[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-7/W1: 173-178. |
[51] | SHAMSHIRI R, NAHAVANDCHI H, MOTAGH M, et al. Efficient ground surface displacement monitoring using Sentinel-1 data: Integrating distributed scatterers identified using two-sample $t$-test with persistent scatterers[J]. Remote Sensing, 2018, 10(5): 794. |
[52] | JIANG Mi, DING Xiaoli, HANSSEN R F, et al. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1213-1224. |
[53] | JIANG Mi, DING Xiaoli, HE Xiufeng, et al. FaSHPS-InSAR technique for distributed scatterers: a case study over the lost hills oil field, California[J]. Chinese Journal of Geophysics, 2016, 59(10): 3592-3603. |
[54] | JIANG Mi, YONG Bin, TIAN Xin, et al. The potential of more accurate InSAR covariance matrix estimation for land cover mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 120-128. |
[55] | SCHMITT M, SCHÖNBERGER J L, STILLA U. Adaptive covariance matrix estimation for multi-baseline InSAR data stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6807-6817. |
[56] | SONG Huina, SUN Yingfei, WANG R, et al. Statistically homogeneous pixel selection for small SAR data sets based on the similarity test of the covariance matrix[J]. Remote Sensing Letters, 2017, 8(10): 927-936. |
[57] | ZHAO Changjun, LI Zhen, TIAN Bangsen, et al. A statistically homogeneous pixel selection approach for adaptive estimation of multitemporal InSAR covariance matrix[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: 102792. |
[58] | CHEN Siwei, WANG Xuesong, SATO M. PolInSAR complex coherence estimation based on covariance matrix similarity test[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4699-4710. |
[59] | WANG Yingjie, DENG Yunkai, FEI Wenbo, et al. Modified statistically homogeneous pixels' selection with multitemporal SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1930-1934. |
[60] | JIANG Mi, DING Xiaoli, LI Zhiwei. Hybrid approach for unbiased coherence estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2459-2473. |
[61] | HU Jun, WU Wenqing, GUI Rong, et al. Deep learning-based homogeneous pixel selection for multitemporal SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234518. |
[62] | DELEDALLE C A, DENIS L, TUPIN F. NL-InSAR: nonlocal interferogram estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1441-1452. |
[63] | Lyu Xiaolei, YAZICI B, ZEGHAL M, et al. Joint-scatterer processing for time-series InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7205-7221. |
[64] | GUARNIERI A M, TEBALDINI S. On the exploitation of target statistics for SAR interferometry applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3436-3443. |
[65] | FERRETTI A, FUMAGALLI A, NOVALI F, et al. Process for filtering interferograms obtained from SAR images acquired on the same area:13/259295[P]. [2024-01-02]. |
[66] | ANSARI H, DE ZAN F, BAMLER R. Efficient phase estimation for interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 4109-4125. |
[67] | TOUGH J A, BLACKNELL D, QUEGAN S. A statistical description of polarimetric and interferometric synthetic aperture radar data[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1995, 449(1937): 567-589. |
[68] | ZEBKER H A, CHEN K. Accurate estimation of correlation in InSAR observations[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 124-127. |
[69] | YU Chen, LI Zhenhong, BAI Lin, et al. Successful applications of generic atmospheric correction online service for InSAR to the reduction of atmospheric effects on InSAR observations[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 109-115. DOI: 10.11947/j.JGGS.2021.0113. |
[70] | TOUZI R, LOPES A, BRUNIQUEL J, et al. Unbiased estimation of the coherence from multi-look SAR data[C]// Proceedings of 1996 International Geoscience and Remote Sensing Symposium. Lincoln, NE: IEEE, 1996. |
[71] | ABDELFATTAH R, NICOLAS J M. Interferometric SAR coherence magnitude estimation using second kind statistics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1942-1953. |
[72] | JIANG Mi, GUARNIERI A M. Distributed scatterer interferometry with the refinement of spatiotemporal coherence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3977-3987. |
[73] | JIANG Mi, DING Xiaoli, LI Zhiwei, et al. InSAR coherence estimation for small data sets and its impact on temporal decorrelation extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6584-6596. |
[74] | WANG Yuanyuan, ZHU Xiaoxiang. Robust estimators for multipass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 968-980. |
[75] | ZHANG Kui, WANG Hui, SONG Ruiqing, et al. The application of the phase reconstruction on small InSAR datasets[J]. Journal of Remote Sensing, 2017, 21(4): 645-652. |
[76] | GUARNIERI A M, TEBALDINI S. Hybrid Cramér--Rao bounds for crustal displacement field estimators in SAR interferometry[J]. IEEE Signal Processing Letters, 2007, 14(12): 1012-1015. |
[77] | GOEL K, ADAM N. High resolution deformation time series estimation for distributed scatterers using TerraSAR-X data[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, I-7: 29-34. |
[78] |
ZHANG Bowen, WANG Robert, DENG Yunkai, et al. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148: 157-173.
doi: 10.1016/j.isprsjprs.2018.12.008 |
[79] | ANSARI H, DE ZAN F, BAMLER R. Sequential estimator: toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5637-5652. |
[80] | SONG Huina, ZHANG Bowen, WANG Mengyuan, et al. A fast phase optimization approach of distributed scatterer for multitemporal SAR data based on Gauss--Seidel method[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4013505. |
[81] | EPPLER J, RABUS B T. Adapting InSAR phase linking for seasonally snow-covered terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4305313. |
[82] | ZWIEBACK S, MEYER F J. Repeat-pass interferometric speckle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6736-6750. |
[83] | YAO Shuyi, BALZ T. Fringe estimation in distributed scatterer interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5218015. |
[1] | Zhenhong LI,Chen YU,Ruya XIAO,Wu ZHU. Entering a New Era of InSAR: Advanced Techniques and Emerging Applications [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 1-4. |
[2] | Wu ZHU,Yang LEI,Quan SUN. Detection, Estimation and Compensation of Ionospheric Effect on SAR Interferogram Using Azimuth Shift [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 14-24. |
[3] | Bing XU,Liqun LIU,Zhiwei LI,Yan ZHU,Jingxin HOU,Wenxiang MAO. Design Bistatic Interferometric DEM Generation Algorithm and Its Theoretical Accuracy Analysis for LuTan-1 Satellites [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 25-38. |
[4] | Zhenhong LI. Locating the Small 1999 Frenchman Flat, Nevada Earthquake with InSAR Stacking [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 39-49. |
[5] | Chuang SONG,Chen YU,Gauhar MELDEBEKOVA,Zhenhong LI. Normal Fault Slips of the March 2021 Greece Earthquake Sequence from InSAR Observations [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 50-59. |
[6] | Lyu ZHOU,Yizhan ZHAO,Zilin ZHU,Chao REN,Fei YANG,Ling HUANG,Xin LI. Spatial and Temporal Evolution of Surface Subsidence in Tianjin from 2015 to 2020 Based on SBAS-InSAR Technology [J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 60-72. |
[7] | Chen YU,Zhenhong LI,Lin BAI,Jan-Peter MULLER,Jingfa ZHANG,Qiming ZENG. Successful Applications of Generic Atmospheric Correction Online Service for InSAR (GACOS) to the Reduction of Atmospheric Effects on InSAR Observations [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 109-115. |
[8] | Qing ZHAO,Antonio PEPE,Adam DEVLIN,Shuangshang ZHANG,Francesco FALABELLA,Giovanni ZENI,Qiang WANG,Jingzhao DING,Danan DONG,Min LIU,Qing XU,Xia LEI,Jiayi PAN. Impact of Sea-Level-Rise and Human Activities in Coastal Regions: An Overview [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 124-143. |
[9] | Keren DAI,Peilian RAN,Zhenhong LI,Julian AUSTIN,Jan-Peter MULLER,Qiming ZENG,Jingfa ZHANG,Leyin HU. Land Subsidence in Xiong’an New Area, China Revealed by InSAR Observations [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 70-76. |
[10] | Guang LIU,Perski ZBIGNIEW,Salvi STEFANO,Thiebes BENNI,Lixin WU,Jinghui FAN,Shibiao BAI,Lianhuan WEI,Shiyong YAN,Rui SONG,Bignami CHRISTIAN,Tolomei CRISTIANO,Stefan SCHNEIDERBAUER,João Sousa JOAQUIM. Land Surface Displacement Geohazards Monitoring Using Multi-temporal InSAR Techniques [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 77-87. |
[11] | Gang LI,Hui LIN,Qinghua YE,Liming JIANG,Andrew HOOPER,Yinyi LIN. Acceleration of Glacier Mass Loss after 2013 at the Mt. Everest (Qomolangma) [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 60-69. |
[12] | Xinming TANG,Tao LI,Xiaoming GAO,Qianfu CHEN,Xiang ZHANG. Research on Key Technologies of Precise InSAR Surveying and Mapping Applications Using Automatic SAR Imaging [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 27-37. |
[13] | Jianjun ZHU,Qinghua XIE,Tingying ZUO,Changcheng WANG,Jian XIE. Complex Least Squares Adjustment to Improve Tree Height Inversion Problem in PolInSAR [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||