Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (1): 76-87.doi: 10.11947/j.JGGS.2023.0106
Previous Articles Next Articles
Xiaofei QU1(),Weiwei ZHAO1(),En LONG1,Meng SUN2,Guangling LAI1
Received:
2022-07-26
Accepted:
2022-12-29
Online:
2023-03-20
Published:
2023-05-04
Contact:
Weiwei ZHAO
E-mail:crane0106@163.com;weiwei_zhaozhao@126.com
About author:
Xiaofei QU, PhD. E-mail: Xiaofei QU,Weiwei ZHAO,En LONG,Meng SUN,Guangling LAI. Removal of Stripes in Remote Sensing Images Based on Statistics Combined with Image Enhancement[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 76-87.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.2
Comparison table of GN based on Gaussian kernel, wavelet, SGIDN, LRTD and SNIE"
Number | Gaussian kernel | Wavelet | SGIDN | LRTD | SNIE |
---|---|---|---|---|---|
1 | 0.0372 | 0.0172 | 0.1313 | 0.1235 | 0.0023 |
2 | 0.0434 | 0.0272 | 0.1225 | 0.0532 | 0.0035 |
3 | 3.7109 | 23.9099 | 2.0105 | 3.0251 | 0.0769 |
4 | 8.4191 | 32.9777 | 1.0256 | 8.5941 | 0.0601 |
5 | 9.8381 | 9.8509 | 8.2562 | 10.2541 | 10.3380 |
6 | 6.3717 | 6.3710 | 6.6878 | 7.2356 | 6.8863 |
7 | 17.0192 | 17.0087 | 16.2548 | 15.2365 | 11.3915 |
8 | 23.7993 | 23.7631 | 24.0325 | 25.2360 | 18.1369 |
9 | 10.9678 | 10.9483 | 11.0213 | 10.2547 | 8.0407 |
10 | 25.6666 | 25.6317 | 24.2315 | 23.3256 | 18.1804 |
11 | 4.3382 | 4.3429 | 5.2365 | 4.5145 | 5.3600 |
12 | 21.4751 | 21.4403 | 20.0213 | 22.0352 | 19.9733 |
13 | 32.8196 | 32.7611 | 30.2123 | 33.0215 | 25.6624 |
14 | 15.9626 | 15.9518 | 16.2451 | 16.2354 | 15.0529 |
15 | 43.6562 | 43.5629 | 44.0365 | 42.0321 | 44.1033 |
16 | 7.8234 | 7.8165 | 8.3265 | 7.6589 | 10.1245 |
17 | 13.9280 | 13.9150 | 14.2315 | 14.2356 | 10.3044 |
18 | 11.0210 | 10.9964 | 12.3251 | 12.0354 | 14.5639 |
19 | 8.1372 | 8.1183 | 9.2013 | 10.2546 | 12.6522 |
Tab.3
Comparison table of CoVa based on Gaussian kernel, wavelet, SGIDN, LRTD and SNIE"
Number | Gaussian kernel | Wavelet | SGIDN | LRTD | SNIE |
---|---|---|---|---|---|
1 | 4.7637 | 4.7616 | 5.2363 | 7.3654 | 3.5549 |
2 | 3.1473 | 3.1248 | 4.3210 | 9.3254 | 2.2915 |
3 | 4.4046 | 26.3350 | 5.3625 | 15.3247 | 2.0552 |
4 | 10.0775 | 37.8765 | 12.3652 | 11.2457 | 13.5879 |
5 | 12.6656 | 12.7311 | 15.3262 | 13.2154 | 16.2573 |
6 | 8.1723 | 8.2384 | 9.3265 | 9.1257 | 11.9527 |
7 | 20.0456 | 20.0796 | 21.0356 | 21.3254 | 18.3148 |
8 | 27.3236 | 27.3157 | 26.3265 | 28.2148 | 23.1276 |
9 | 14.7168 | 14.7552 | 15.3262 | 15.3654 | 14.8469 |
10 | 28.4846 | 28.4696 | 24.3265 | 29.1234 | 23.4003 |
11 | 7.8759 | 7.9296 | 8.3265 | 9.3258 | 12.8616 |
12 | 24.0951 | 24.0810 | 26.3256 | 25.8745 | 25.4896 |
13 | 38.2478 | 38.1988 | 36.0325 | 35.0214 | 32.5640 |
14 | 20.2182 | 20.2206 | 23.0325 | 20.3658 | 19.7066 |
15 | 47.8392 | 47.7343 | 48.3264 | 49.2541 | 48.8398 |
16 | 18.7895 | 18.7801 | 19.4578 | 19.6852 | 17.0141 |
17 | 19.7581 | 19.7465 | 19.8745 | 20.3652 | 12.0365 |
18 | 18.2736 | 18.2428 | 19.3654 | 21.3650 | 19.8136 |
19 | 14.5993 | 14.5811 | 15.3254 | 19.3254 | 17.3696 |
Tab.4
Comparison table of GN before and after remote sensing images destriping"
Number | GN without SNIE | GN with SNIE |
---|---|---|
1 | 0.0172 | 0.0003 |
2 | 0.0234 | 0.0181 |
3 | 0.0555 | 0.0554 |
4 | 0.1192 | 0.1191 |
5 | 0.1644 | 0.1519 |
6 | 0.0886 | 0.0795 |
7 | 3.8318 | 2.8595 |
8 | 2.4743 | 2.2915 |
9 | 3.5402 | 2.8990 |
10 | 6.3814 | 5.3970 |
11 | 4.1736 | 3.1562 |
12 | 4.6545 | 4.0483 |
13 | 6.8082 | 6.5225 |
14 | 2.6970 | 2.0589 |
15 | 3.4118 | 3.1374 |
Mean | 2.5627 | 2.1863 |
Tab.5
Comparison table of CoVa before and after remote sensing images destriping"
Number | CoVa without SNIE | CoVa with SNIE |
---|---|---|
1 | 4.7647 | 3.5549 |
2 | 3.1513 | 2.8770 |
3 | 4.4414 | 3.6223 |
4 | 7.3563 | 6.0516 |
5 | 4.7837 | 3.384 |
6 | 5.5456 | 4.6846 |
7 | 7.9026 | 7.4591 |
8 | 3.4235 | 2.5169 |
9 | 4.1453 | 4.0979 |
10 | 3.6902 | 3.4323 |
Mean | 4.9205 | 4.1681 |
[1] |
FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 92-100. DOI: 10.11947/j.JGGS.2019.0210.
doi: 10.11947/j.JGGS.2019.0210 |
[2] | SUI Xiubao, CHEN Qian, GU Guohua. Adaptive grayscale adjustment-based stripe noise removal method of single image[J]. Infrared Physics & Technology, 2013, 60: 121-128. |
[3] |
LIU Xinxin, LU Xiliang, SHEN Huanfeng, et al. Stripe noise separation and removal in remote sensing images by consideration of the global sparsity and local variational properties[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3049-3060.
doi: 10.1109/TGRS.2015.2510418 |
[4] |
CHANG Yi, YAN Luxin, WU Tao, et al. Remote sensing image stripe noise removal: from image decomposition perspective[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7018-7031.
doi: 10.1109/TGRS.2016.2594080 |
[5] |
ZHOU Gang, FANG Houzhang, YAN Luxin, et al. Removal of stripe noise with spatially adaptive unidirectional total variation[J]. Optik, 2014, 125(12): 2756-2762.
doi: 10.1016/j.ijleo.2013.11.031 |
[6] |
STALIUNAS K. Spatial and temporal spectra of noise driven stripe patterns[J]. Physical Review E, 2001, 64(6): 066129.
doi: 10.1103/PhysRevE.64.066129 |
[7] | KUANG Xiaodong, SUI Xiubao, CHEN Qian, et al. Single infrared image stripe noise removal using deep convolutional networks[J]. IEEE Photonics Journal, 2017, 9(4): 3900913. |
[8] |
SHEN Huanfeng, LI Xinghua, ZHANG Liangpei, et al. Compressed sensing-based inpainting of aqua moderate resolution imaging spectroradiometer band 6 using adaptive spectrum-weighted sparse Bayesian dictionary learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 894-906. DOI: 10.1109/TGRS.2013.2245509.
doi: 10.1109/TGRS.2013.2245509 |
[9] |
SUI Xiubao, CHEN Qian, GU Guohua. Algorithm for eliminating stripe noise in infrared image[J]. Journal of Infrared and Millimeter Waves, 2012, 31(2): 106-112.
doi: 10.3724/SP.J.1010.2012.00106 |
[10] |
WILKEN D, FELDENS P, WUNDERLICH T, et al. Application of 2D Fourier filtering for elimination of stripe noise in side-scan sonar mosaics[J]. Geo-Marine Letters, 2012, 32(4): 337-347.
doi: 10.1007/s00367-012-0293-z |
[11] | WANG Shupeng. Stripe noise removal for infrared image by minimizing difference between columns[J]. Infrared Physics & Technology, 2016, 77: 58-64. |
[12] | LOU Xiaoguang, LI Xianglin, WANG Zhensong. Stripe noise elimination of SAR pictures[J]. Journal of Image and Graphics, 1999, 4(3): 252-255. |
[13] | GAO Hailiang, GU Xingfa, YU Tao, et al. Removing the stripe noise in HJ-1A HSI images[C]//Proceedings of SPIE 8203, Remote Sensing of the Environment:The 17th China Conference on Remote Sensing. Hangzhou: SPIE, 2011(8203):06. |
[14] | DUAN Yini, ZHANG Lifu, YAN Lei, et al. Relative radiometric correction methods for remote sensing images and their applicability analysis[J]. Journal of Remote Sensing, 2014, 18(3): 597-617. |
[15] | LI Xiaoling, NIE Xiangfei, HUANG Haibo, et al. Remote sensing image fusion method based on guided filter and histogram matching[J]. Video Engineering, 2018, 42(10): 17-20, 76. |
[16] | CUI Jian, SHI Penghui, BAI Weiming, et al. Destriping model of GF-2 image based on moment matching[J]. Remote Sensing for Land & Resources, 2017, 29(S1): 34-38. |
[17] | HUANG P S, SU S C, TU T M. A destriping and enhancing technique for EROS remote sensing imagery[J]. Journal of Chung Cheng Institute of Technology, 2004, 32(2): 195-208. |
[18] |
TSAI F, CHEN W W. Striping noise detection and correction of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(12): 4122-4131.
doi: 10.1109/TGRS.2008.2000646 |
[19] | PARISOT C, ANTONINI M, BARLAUD M, et al. On board strip-based wavelet image coding for future space remote sensing missions[C]//Proceedings of IEEE International Geoscience & Remote Sensing Symposium. Honolulu, HI: IEEE, 2002: 2651-2653. |
[20] | CHEN Ying, ZHU Ming, LI Zhaoze. Remote sensing digital image enhancement based on Gaussian mixture modeling[J]. Chinese Journal of Lasers, 2014, 41(12): 1209002. |
[21] | SMARA Y, HAMADACHE Z. A comparative study of destriping methods for EO-1 hyperion hyperspectral sensor for land use classification[C]//Proceedings of the 6th International Conference on Graphic and Image Processing (ICGIP 2014). Beijing: [s.n.], 2014. |
[22] | HAN Chuncheng, LIN Heping, ZHOU Tao, et al. Research on the enhancing method for remote sensing digital image[J]. Journal of Changchun Normal University, 2012, 31(12): 29-31. |
[23] | HUAI Wenjun, SHANG Li, SU Pingang. MMW image enhancement based on gray stretch technique and SSR theory[C]//Proceedings of the 8th International Conference on Intelligent Computing Technology. Huangshan: Springer, 2012: 379-385. |
[24] | VARMA G P, POONAMSINHA D. Image contrast enhancement by stretch composite histogram equalization[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2015, 3(11): 11022-11028. |
[25] | LI Jinping, MU Hongshan, XU Wei. A method of using digital image processing for edge detection of red blood cells[J]. Sensors & Transducers Journal, 2013, 159(11): 1-6. |
[26] | YANG Dan, YANGLichun,ZHOU Dabiao. Stripe removal method for remote sensing images based on multi-scale variation model[C]//Proceedings of 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Dalian:IEEE, 2020: 1-5. |
[27] |
CALLEN H B, WELTON T A. Irreversibility and generalized noise[J]. Physical Review, 1951, 83(1): 34-40.
doi: 10.1103/PhysRev.83.34 |
[28] |
THAI T H, RETRAINT F, COGRANNE R. Camera model identification based on the generalized noise model in natural images[J]. Digital Signal Processing, 2016, 48: 285-297.
doi: 10.1016/j.dsp.2015.10.002 |
[29] | LOVIE P. Coefficient of variation[M] //EVERITTB S, HOWELLD C.Encyclopedia of Statistics in Behavioral Science. Hoboken, NJ: John Wiley & Sons, Ltd., 2005. |
[30] |
BAZI Y, MELGANI F. Gaussian process approach to remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 186-197.
doi: 10.1109/TGRS.2009.2023983 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||