[1] |
ZUO Zongcheng, ZHANG Wen, ZHANG Dongying. A remote sensing image semantic segmentation method by combining deformable convolution with conditional random fields[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(3): 39-49.
doi: 10.11947/j.JGGS.2020.0304
|
[2] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 3431-3440.
|
[3] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241.
|
[4] |
CHENL C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 833-851.
|
[5] |
FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 3146-3154.
|
[6] |
XIAO Tete, LIU Yingcheng, ZHOU Bolei, et al. Unified perceptual parsing for scene understanding[C]//Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 432-448.
|
[7] |
ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 6230-6239.
|
[8] |
MOU Lichao, HUA Yuansheng, ZHU Xiaoxiang. Relation matters: relational context-aware fully convolutional network for semantic segmentation of high-resolution aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 7557-7569.
doi: 10.1109/TGRS.36
|
[9] |
L Wenjie, LI Yu, Z Quanhua. High-resolution remote sensing image segmentation using minimum spanning tree tessellation and RHMRF-FCM algorithm[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 52-63.
doi: 10.11947/j.JGGS.2020.0106
|
[10] |
DOSOVITSKIYA, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//Proceedings of the 9th International Conference on Learning Representations. [S.l.]: OpenReview.net, 2021: 1-5.
|
[11] |
LIU Z, et al. “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021, pp. 9992-10002, doi: 10.1109/ICCV48922.2021.00986.
|
[12] |
CAO Hu, WANG Yueyue, CHEN J, et al. Swin-Unet: unet-like pure transformer for medical image segmentation[C]//Proceedings of the European Conference on Computer Vision. Tel Aviv: Springer, 2023: 205-218.
|
[13] |
LIN Ailiang, CHEN Bingzhi, XU Jiayu, et al. DS-TransUNet: dual swin transformer U-Net for medical image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 4005615.
|
[14] |
HE Xin, ZHOU Yong, ZHAO Jiaqi, et al. Swin transformer embedding UNet for remote sensing image semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4408715.
|
[15] |
CHEN J, LU Y, YU Q, et al. Transunet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2023-09-01]. https://www.cs.jhu.edu/-alanlab/Pubs21/chen2021transunet.pdf.
|
[16] |
JIANG Liming, ZHANG Changxu, HUANG Mingyang, et al. TSIT: a simple and versatile framework for image-to-image translation[C]//Proceedings of the 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 206-222.
|
[17] |
WANG Xintao, YU Ke, DONG Chao, et al. Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 606-615.
|
[18] |
ISPRS 2D semantic labeling dataset[EB/OL]. [2021-06-10]. https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/.
|
[19] |
MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. High-resolution aerial image labeling with convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7092-7103.
doi: 10.1109/TGRS.2017.2740362
|
[20] |
LIU Yu, NGUYEN D M, DELIGIANNIS N, et al. Hourglass-shape network based semantic segmentation for high resolution aerial imagery[J]. Remote Sensing, 2017, 9(6): 522.
doi: 10.3390/rs9060522
|
[21] |
VOLPI M, TUIA D. Dense semantic labeling of subdecimeter resolution images with convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 881-893.
doi: 10.1109/TGRS.2016.2616585
|
[22] |
MARCOS D, VOLPI M, KELLENBERGER B, et al. Land cover mapping at very high resolution with rotation equivariant CNNs: towards small yet accurate models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145: 96-107.
doi: 10.1016/j.isprsjprs.2018.01.021
|
[23] |
LI Xiangtai, HE Hao, LI Xia, et al. PointFlow: flowing semantics through points for aerial image segmentation[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE, 2021: 4217-4226.
|
[24] |
FIDONL, LI Wenqi, GARCIA-PERAZA-HERRERA L C, et al. Generalised Wasserstein dice score for imbalanced multi-class segmentation using holistic convolutional networks[C]//Proceedings of the 3rd International MICCAI Brainlesion Workshop. Quebec City: Springer, 2017: 64-76.
|
[25] |
ZHU Qingtian, ZHENG Yumin, JIANG Yulai, et al. Efficient multi-class semantic segmentation of high resolution aerial imagery with dilated LinkNet[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 1065-1068.
|
[26] |
PENG Zhiliang, HUANG Wei, GU Shanzhi, et al. Conformer: local features coupling global representations for visual recognition[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 357-366. DOI: 10.1109/ICCV48922.2021.00042.
|