Journal of Geodesy and Geoinformation Science ›› 2023, Vol. 6 ›› Issue (4): 48-69.doi: 10.11947/j.JGGS.2023.0405
Previous Articles Next Articles
Xunzhe YIN(), Dongjie YUE(), Changzhi ZHAI, Yutian CHEN, Xiaoyun CHENG
Received:
2023-06-15
Accepted:
2023-08-25
Online:
2023-12-20
Published:
2024-02-06
Contact:
Dongjie YUE
E-mail:yin.xunzhe@foxmail.com;yuedongjie@hhu.edu.cn
About author:
Xunzhe YIN E-mail: yin.xunzhe@foxmail.com
Supported by:
Xunzhe YIN, Dongjie YUE, Changzhi ZHAI, Yutian CHEN, Xiaoyun CHENG. Suppression of Plasma Bubbles over South America under Weak Geomagnetic Perturbations[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 48-69.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Fig.8
Ne profiles at similar times on November 21 to 23, 2020 from swarm satellites (left panel) and the corresponding orbit tracks at the position over South America (right panel) (The black, green, and blue lines represent the orbits of swarm A, B, and C, respectively, and the red fluorescence indicates the occurrence of ionospheric irregularities with ROTI>0.4)"
[1] |
BOOKER H G, WELLS H W. Scattering of radio waves by the F-region of the ionosphere[J]. Terrestrial Magnetism and Atmospheric Electricity, 1938, 43(3): 249-256.
doi: 10.1029/TE043i003p00249 |
[2] | HAERENDEL G, ECCLES J V, ÇAKIR S. Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow[J]. Journal of Geophysical Research: Space Physics, 1992, 97(A2): 1209-1223. |
[3] | YOKOYAMA T, SHINAGAWA H, JIN H. Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model[J]. Journal of Geophysical Research: Space Physics, 2014, 119(12): 10474-10482. |
[4] |
ABDU M A. Equatorial ionosphere-thermosphere system: electrodynamics and irregularities[J]. Advances in Space Research, 2005, 35(5): 771-787.
doi: 10.1016/j.asr.2005.03.150 |
[5] |
CARTER B A, ZHANG K, NORMAN R, et al. On the occurrence of equatorial F-region irregularities during solar minimum using radio occultation measurements[J]. Journal of Geophysical Research: Space Physics, 2013, 118(2): 892-904.
doi: 10.1002/jgra.v118.2 |
[6] | FEJER B G, SCHERLIESS L, DE PAULA E R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A9): 19859-19869. |
[7] |
KIL H. The morphology of equatorial plasma bubbles-a review[J]. Journal of Astronomy and Space Sciences, 2015, 32(1): 13-19.
doi: 10.5140/JASS.2015.32.1.13 |
[8] |
WOODMAN R F, LA HOZ C. Radar observations of F region equatorial irregularities[J]. Journal of Geophysical Research, 1976, 81(31): 5447-5466.
doi: 10.1029/JA081i031p05447 |
[9] |
CHERNIAK I, ZAKHARENKOVA I, SOKOLOVSKY S. Multi-instrumental observation of storm-induced ionospheric plasma bubbles at equatorial and middle latitudes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(3): 1491-1508.
doi: 10.1029/2018JA026309 |
[10] | LÜHR H, XIONG Chao, PARK J, et al. Systematic study of intermediate-scale structures of equatorial plasma irregularities in the ionosphere based on CHAMP observations[J]. Frontiers in Physics, 2014, 2: 15. |
[11] |
HYSELL D L. An overview and synthesis of plasma irregularities in equatorial spread F[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62(12): 1037-1056.
doi: 10.1016/S1364-6826(00)00095-X |
[12] | CHERNIAK I, ZAKHARENKOVA I. First observations of super plasma bubbles in Europe[J]. Geophysical Research Letters, 2016, 43(21): 11137-11145. |
[13] |
XIONG Chao, STOLLE C, LÜHR H. The swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities[J]. Space Weather, 2016, 14(8): 563-577.
doi: 10.1002/swe.v14.8 |
[14] |
KELLY M A, COMBERIATE J M, MILLER E S, et al. Progress toward forecasting of space weather effects on UHF SATCOM after operation anaconda[J]. Space Weather, 2014, 12(10): 601-611.
doi: 10.1002/swe.v12.10 |
[15] |
ABDU M A. Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 75-76: 44-56.
doi: 10.1016/j.jastp.2011.04.024 |
[16] |
LI Guozhu, NING Baiqi, WANG Chi, et al. Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W on 7—8 September 2017[J]. Journal of Geophysical Research: Space Physics, 2018, 123(9): 7985-7998.
doi: 10.1029/2018JA025871 |
[17] | OTSUKA Y, SHIOKAWA K, OGAWA T, et al. Geomagnetic conjugate observations of equatorial airglow depletions[J]. Geophysical Research Letters, 2002, 29(15): 1753. |
[18] |
MAKELA J J, LEDVINA B M, KELLEY M C, et al. Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii[J]. Annales Geophysicae, 2004, 22(9): 3109-3121.
doi: 10.5194/angeo-22-3109-2004 |
[19] |
TARDELLI-COELHO F, PIMENTA A A, TARDELLI A, et al. Plasma blobs associated with plasma bubbles observed in the Brazilian sector[J]. Advances in Space Research, 2017, 60(8): 1716-1724.
doi: 10.1016/j.asr.2017.06.018 |
[20] |
GURAV O B, NARAYANAN V L, SHARMA A K, et al. Airglow imaging observations of some evolutionary aspects of equatorial plasma bubbles from Indian sector[J]. Advances in Space Research, 2019, 64(2): 385-399.
doi: 10.1016/j.asr.2019.04.008 |
[21] | WU Qi, YU Tao, LIN Zhaoxiang, et al. Night airglow observations to irregularities in the ionospheric F region over Hainan[J]. Chinese Journal of Geophysics, 2016, 59(1): 17-27. |
[22] | SUN Longchang, XU Jiyao, WANG Wenbin, et al. A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China[J]. Journal of Geophysical Research: Space Physics, 2016, 121(11): 11495-11517. |
[23] | COMBERIATE J, PAXTON L J. Coordinated UV imaging of equatorial plasma bubbles using TIMED/GUVI and DMSP/SSUSI[J]. Space Weather, 2010, 8(10): S10002. |
[24] |
HICKEY D A, MARTINIS C R, MENDILLO M, et al. Simultaneous 6300 Å airglow and radar observations of ionospheric irregularities and dynamics at the geomagnetic equator[J]. Annales Geophysicae, 2018, 36(2): 473-487.
doi: 10.5194/angeo-36-473-2018 |
[25] | KELLEY M C, MAKELA J J, PAXTON L J, et al. The first coordinated ground-and space-based optical observations of equatorial plasma bubbles[J]. Geophysical Research Letters, 2003, 30(14): 1766. |
[26] | KIL H, HEELIS R A, PAXTON L J, et al. Formation of a plasma depletion shell in the equatorial ionosphere[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A11): A11302. |
[27] |
MAKELA J J. A review of imaging low-latitude ionospheric irregularity processes[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(13): 1441-1458.
doi: 10.1016/j.jastp.2005.04.014 |
[28] |
MARTINIS C, BAUMGARDNER J, MENDILLO M, et al. The night when the auroral and equatorial ionospheres converged[J]. Journal of Geophysical Research: Space Physics, 2015, 120(9): 8085-8095.
doi: 10.1002/jgra.v120.9 |
[29] | BURKE W J, GENTILE L C, HUANG C Y, et al. Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A12): A12301. |
[30] |
BURKE W J, HUANG C Y, GENTILE L C, et al. Seasonal-longitudinal variability of equatorial plasma bubbles[J]. Annales Geophysicae, 2004, 22(9): 3089-3098.
doi: 10.5194/angeo-22-3089-2004 |
[31] | HUANG C Y, BURKE W J, MACHUZAK J S, et al. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: toward a global climatology[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1434. |
[32] |
HUANG Chaosong, DE LA BEAUJARDIERE O, RODDY P A, et al. Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008—2012)[J]. Journal of Geophysical Research: Space Physics, 2014, 119(2): 1186-1199.
doi: 10.1002/jgra.v119.2 |
[33] |
SMITH J, HEELIS R A. Equatorial plasma bubbles: variations of occurrence and spatial scale in local time, longitude, season, and solar activity[J]. Journal of Geophysical Research: Space Physics, 2017, 122(5): 5743-5755.
doi: 10.1002/jgra.v122.5 |
[34] |
XIONG Chao, STOLLE C, LÜHR H, et al. Scale analysis of equatorial plasma irregularities derived from swarm constellation[J]. Earth, Planets and Space, 2016, 68(1): 121.
doi: 10.1186/s40623-016-0502-5 |
[35] |
ZAKHARENKOVA I, ASTAFYEVA E, CHERNIAK I. GPS and in situ swarm observations of the equatorial plasma density irregularities in the topside ionosphere[J]. Earth, Planets and Space, 2016, 68(1): 120.
doi: 10.1186/s40623-016-0490-5 |
[36] |
AA E, HUANG Wengeng, LIU Siqing, et al. Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017[J]. Space Weather, 2018, 16(3): 321-331.
doi: 10.1002/swe.v16.3 |
[37] | HUANG Fuqing, LEI Jiuhou, XIONG Chao, et al. Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016[J]. Earth and Planetary Physics, 2021, 5(5): 416-426. |
[38] |
BARROS D, TAKAHASHI H, WRASSE C M, et al. Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America[J]. Annales Geophysicae, 2018, 36(1): 91-100.
doi: 10.5194/angeo-36-91-2018 |
[39] | BUHARI S M, ABDULLAH M, HASBI A M, et al. Continuous generation and two-dimensional structure of equatorial plasma bubbles observed by high-density GPS receivers in Southeast Asia[J]. Journal of Geophysical Research: Space Physics, 2014, 119(12): 10569-10580. |
[40] |
BUHARI S M, ABDULLAH M, YOKOYAMA T, et al. Climatology of successive equatorial plasma bubbles observed by GPS ROTI over Malaysia[J]. Journal of Geophysical Research: Space Physics, 2017, 122(2): 2174-2184.
doi: 10.1002/jgra.v122.2 |
[41] |
KATAMZI-JOSEPH Z T, HABARULEMA J B, HERNÁNDEZ-PAJARES M. Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001[J]. Space Weather, 2017, 15(9): 1177-1190.
doi: 10.1002/swe.v15.9 |
[42] |
TAKAHASHI H, WRASSE C M, OTSUKA Y, et al. Plasma bubble monitoring by TEC map and 630 nm airglow image[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 130-131: 151-158.
doi: 10.1016/j.jastp.2015.06.003 |
[43] | AA E, ZOU Shasha, EASTES R, et al. Coordinated ground-based and space-based observations of equatorial plasma bubbles[J]. Journal of Geophysical Research: Space Physics, 2020, 125(1): e2019JA027569. |
[44] |
ZAKHARENKOVA I, CHERNIAK I. Effects of storm-induced equatorial plasma bubbles on GPS-based kinematic positioning at equatorial and middle latitudes during the September 7-8, 2017, geomagnetic storm[J]. GPS Solutions, 2021, 25(4): 132.
doi: 10.1007/s10291-021-01166-3 |
[45] |
KELLEY M C, FEJER B G, GONZALES C A. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field[J]. Geophysical Research Letters, 1979, 6(4): 301-304.
doi: 10.1029/GL006i004p00301 |
[46] | KIKUCHI T, LÜHR H, SCHLEGEL K, et al. Penetration of auroral electric fields to the equator during a substorm[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A10): 23251-23261. |
[47] | RAMSINGH, SRIPATHI S, SREEKUMAR S, et al. Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: results from a chain of ground-based observations over Indian sector[J]. Journal of Geophysical Research: Space Physics, 2015, 120(12): 10864-10882. |
[48] |
SRIPATHI S, BANOLA S, EMPERUMAL K, et al. The role of storm time electrodynamics in suppressing the equatorial plasma bubble development in the recovery phase of a geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2018, 123(3): 2336-2350.
doi: 10.1002/jgra.v123.3 |
[49] | ABDU M A, BATISTA I S, REINISCH B W, et al. Conjugate Point Equatorial Experiment (COPEX) campaign in Brazil: electrodynamics highlights on spread F development conditions and day-to-day variability[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A4): A04308. |
[50] | BLANC M, RICHMOND A D. The ionospheric disturbance dynamo[J]. Journal of Geophysical Research: Space Physics, 1980, 85(A4): 1669-1686. |
[51] | SORI T, SHINBORI A, OTSUKA Y, et al. The occurrence feature of plasma bubbles in the equatorial to midlatitude ionosphere during geomagnetic storms using long-term GNSS-TEC data[J]. Journal of Geophysical Research: Space Physics, 2021, 126(5): e2020JA029010. |
[52] | ZAKHARENKOVA I, CHERNIAK I. When plasma streams tie up equatorial plasma irregularities with auroral ones[J]. Space Weather, 2020, 18(2): e2019SW002375. |
[53] | MA Guanyi, MARUYAMA T. A super bubble detected by dense GPS network at east Asian longitudes[J]. Geophysical Research Letters, 2006, 33(21): L21103. |
[54] | LI Guozhu, NING Baiqi, HU Lianhuan, et al. Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A4): A04304. |
[55] | TULASI RAM S, RAMA RAO P V S, PRASAD D S V V D, et al. Local time dependent response of postsunset ESF during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A7): A07310. |
[56] |
CARTER B A, YIZENGAW E, PRADIPTA R, et al. Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm[J]. Journal of Geophysical Research: Space Physics, 2016, 121(1): 894-905.
doi: 10.1002/jgra.v121.1 |
[57] |
NAYAK C, TSAI L C, SU S Y, et al. Suppression of ionospheric scintillation during St. Patrick’s Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: a case study[J]. Advances in Space Research, 2017, 60(2): 396-405.
doi: 10.1016/j.asr.2016.11.036 |
[58] |
RAJESH P K, LIN C H, CHEN C H, et al. Equatorial plasma bubble generation/inhibition during 2015 St. Patrick’s Day storm[J]. Space Weather, 2017, 15(9): 1141-1150.
doi: 10.1002/swe.v15.9 |
[59] |
ZAKHARENKOVA I, CHERNIAK I, KRANKOWSKI A. Features of storm-induced ionospheric irregularities from ground-based and spaceborne GPS observations during the 2015 St. Patrick’s Day storm[J]. Journal of Geophysical Research: Space Physics, 2019, 124(12): 10728-10748.
doi: 10.1029/2019JA026782 |
[60] |
SOBRAL J H A, ABDU M A, TAKAHASHI H, et al. Ionospheric plasma bubble climatology over Brazil based on 22 years (1977—1998) of 630 nm airglow observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(12-14): 1517-1524.
doi: 10.1016/S1364-6826(02)00089-5 |
[61] |
EASTES R W, MCCLINTOCK W E, BURNS A G, et al. The Global-scale Observations of the Limb and Disk (GOLD) mission[J]. Space Science Reviews, 2017, 212(1): 383-408.
doi: 10.1007/s11214-017-0392-2 |
[62] |
EASTES R W, SOLOMON S C, DANIELL R E, et al. Global-scale observations of the equatorial ionization anomaly[J]. Geophysical Research Letters, 2019, 46(16): 9318-9326.
doi: 10.1029/2019GL084199 |
[63] | EASTES R W, MCCLINTOCK W E, BURNS A G, et al. Initial observations by the GOLD mission[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2020JA027823. |
[64] |
RIDEOUT W, COSTER A. Automated GPS processing for global total electron content data[J]. GPS Solutions, 2006, 10(3): 219-228.
doi: 10.1007/s10291-006-0029-5 |
[65] |
CHERNIAK I, KRANKOWSKI A, ZAKHARENKOVA I. ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occurrence[J]. GPS Solutions, 2018, 22(3): 69.)
doi: 10.1007/s10291-018-0730-1 |
[66] | KIL H, SU S Y, PAXTON L J, et al. Coincident equatorial bubble detection by TIMED/GUVI and ROCSAT-1[J]. Geophysical Research Letters, 2004, 31(3): L03809. |
[67] | FEJER B G, SCHERLIESS L. Empirical models of storm time equatorial zonal electric fields[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A11): 24047-24056. |
[68] | ABDU M A, KHERANI E A, BATISTA I S, et al. Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields[J]. Geophysical Research Letters, 2009, 36(19): L19103. |
[69] | PALMROTH M, LAAKSO H, FEJER B G, et al. DE 2 observations of morningside and eveningside plasma density depletions in the equatorial ionosphere[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A8): 18429-18442. |
[70] |
BIKTASH L Z. Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms[J]. Annales Geophysicae, 2004, 22(9): 3195-3202.
doi: 10.5194/angeo-22-3195-2004 |
[71] |
LI Guozhu, NING Baiqi, ZHAO Biqiang, et al. Effects of geomagnetic storm on GPS ionospheric scintillations at Sanya[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(7): 1034-1045.
doi: 10.1016/j.jastp.2008.01.003 |
[72] |
KUAI Jiawei, LIU Libo, LIU Jing, et al. Effects of disturbed electric fields in the low-latitude and equatorial ionosphere during the 2015 St. Patrick’s Day storm[J]. Journal of Geophysical Research: Space Physics, 2016, 121(9): 9111-9126.
doi: 10.1002/jgra.v121.9 |
[73] |
DUGASSA T, HABARULEMA J B, NIGUSSIE M. Longitudinal variability of occurrence of ionospheric irregularities over the American, African and Indian regions during geomagnetic storms[J]. Advances in Space Research, 2019, 63(8): 2609-2622.
doi: 10.1016/j.asr.2019.01.001 |
[74] |
KESKINEN M J, OSSAKOW S L. Theories of high-latitude ionospheric irregularities: a review[J]. Radio Science, 1983, 18(6): 1077-1091.
doi: 10.1029/RS018i006p01077 |
[75] |
TSUNODA R T. High-latitude F region irregularities: a review and synthesis[J]. Reviews of Geophysics, 1988, 26(4): 719-760.
doi: 10.1029/RG026i004p00719 |
[76] |
CHERNIAK I, ZAKHARENKOVA I, REDMON R J. Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: ground-based GPS measurements[J]. Space Weather, 2015, 13(9): 585-597.
doi: 10.1002/swe.v13.9 |
[77] |
JAKOWSKI N, MIELICH J, BORRIES C, et al. Large-scale ionospheric gradients over Europe observed in October 2003[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(15): 1894-1903.
doi: 10.1016/j.jastp.2008.03.020 |
[78] | CHERNIAK I, ZAKHARENKOVA I. Development of the storm-induced ionospheric irregularities at equatorial and middle latitudes during the 25—26 August 2018 geomagnetic storm[J]. Space Weather, 2022, 20(2): e2021SW002891. |
[79] |
CHENG Xiaoyun, YUE Dongjie, ZHAI Changzhi, et al. Analysis of anomalous enhancement in TEC and electron density in the China region prior to the 17 March 2015 geomagnetic storm based on ground and space observations[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(2): 40-50.
doi: 10.11947/j.JGGS.2023.0205 |
[80] | FEJER B G, JENSEN J W, SU S Y. Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts[J]. Geophysical Research Letters, 2008, 35(20): L20106. |
[81] | SULTAN P J. Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F[J]. Journal of Geophysical Research: Space Physics, 1996, 101(A12): 26875-26891. |
[82] |
CARTER B A, RETTERER J M, YIZENGAW E, et al. Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp[J]. Geophysical Research Letters, 2014, 41(15): 5331-5339.
doi: 10.1002/grl.v41.15 |
[1] | Fulong XU,Zishen LI,Kefei ZHANG,Ningbo WANG,Suqin WU,Andong HU,Lucas Holden. An Investigation of Optimal Machine Learning Methods for the Prediction of ROTI [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||