[1] |
IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation[R]. Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge: Cambridge University Press, 2012.
|
[2] |
CRED, UNDRR. The human cost of weather related disasters: 1995-2015[R]. Geneva: Centre for Research on the Epidemiology of Disasters (CRED), United Nations International Strategy for Disaster Reduction, 2015.
|
[3] |
DOTTORI F, SZEWCZYK W, CISCAR J C, et al. Increased human and economic losses from river flooding with anthropogenic warming[J]. Nature Climate Change, 2018, 8(9):781-786. DOI: 10.1038/s41558-018-0257-z.
|
[4] |
FANG Jian, ZHANG Chaoyang, FANG Jiayi, et al. Increasing exposure to floods in China revealed by nighttime light data and flood susceptibility mapping[J]. Environmental Research Letters, 2021, 16(10): 104044. DOI: 10.1088/1748-9326/ac263e.
|
[5] |
KUANG Da, LIAO K H. Learning from floods: linking flood experience and flood resilience[J]. Journal of Environmental Management, 2020, 271: 111025. DOI: 10.1016/j.jenvman.2020.111025.
|
[6] |
MARANZONI A, D'Oria M, RIZZO C. Quantitative flood hazard assessment methods: a review[J]. Journal of Flood Risk Management, 2023, 16(1): e12855. DOI: 10.1111/jfr3.12855.
|
[7] |
ALBERTINI C, GIOIA A, IACOBELLIS V, et al. Detection of surface water and floods with multispectral satellites[J]. Remote Sensing, 2022, 14(23): 6005. DOI: 10.3390/rs14236005.
|
[8] |
YAN Pu, FANG Yue, GHEN Jie, et al. Automated extraction for water bodies using new water index from Landsat 8 OLI images[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 59-75. DOI: 10.11947/j.JGGS.2023.0105.
|
[9] |
MEMON A A, MUHAMMAD S, RAHMAN S, et al. Flood monitoring and damage assessment using water indices: a case study of Pakistan flood-2012[J]. The Egyptian Journal of Remote Sensing and Space Science, 2015, 28(1): 99-106. DOI: 10.1016/j.ejrs.2015.03.003.
|
[10] |
ADAMS S M, FRIEDLAND C J. A survey of Unmanned Aerial Vehicle (UAV) usage for imagery collection in disaster research and management[C]// Proceedings of the 9th International Workshop on Remote Sensing for Disaster Response. Stanford, CA: [s.n.], 2011.
|
[11] |
GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 693-704. DOI: 10.11947/j.AGCS.2018.20170640.
|
[12] |
RAHNEMOONFAR M, CHOWDHURY T, SARKAR A, et al. FloodNet: a high resolution aerial imagery dataset for post flood scene understanding[J]. IEEE Access, 2021, 9: 89644-89654. DOI: 10.1109/ACCESS.2021.3090981.
|
[13] |
MUNAWAR H S, ULLAH F, QAYYUM S, et al. Application of deep learning on UAV-based aerial images for flood detection[J]. Smart Cities, 2021, 4(3): 1220-1242. DOI: 10.3390/smartcities4030065.
|
[14] |
SAFAVI F, CHOWDHURY T, RAHNEMOONFAR M. Comparative study between real-time and non-real-time segmentation models on flooding events[C]// Proceedings of 2021 IEEE International Conference on Big Data (Big Data). Orlando, FL: IEEE, 2021: 4199-4207.
|
[15] |
HERNÁNDEZ D, CECILIA J M, CANO J C, et al. Flood detection using real-time image segmentation from unmanned aerial vehicles on edge-computing platform[J]. Remote Sensing, 2022, 14(1): 223. DOI: 10.3390/rs14010223.
|
[16] |
INTHIZAMI N S, MA'SUM M A, ALHAMIDI M R, et al. Flood video segmentation on remotely sensed UAV using improved Efficient Neural Network[J]. ICT Express, 2022, 8(3): 347-351. DOI: 10.1016/j.icte.2022.01.016.
|
[17] |
TAN Mingxing, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. Long Beach, CA: PMLR, 2019.
|
[18] |
LIANG Yongqing, LI Xin, TSAI B, et al. V-FloodNet: a video segmentation system for urban flood detection and quantification[J]. Environmental Modelling & Software, 2023, 160: 105586. DOI: 10.1016/j.envsoft.2022.105586.
|
[19] |
PI Yalong, NATH N D, BEHZADAN A H. Detection and semantic segmentation of disaster damage in UAV footage[J]. Journal of Computing in Civil Engineering, 2021, 35(2): 04020063. DOI: 10.1061/(ASCE)CP.1943-5487.0000947.
|
[20] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015.
|
[21] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 15th European Conference on Computer Vision-ECCV 2018. Munich: Springer, 2018: 3-19.
|
[22] |
ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI: IEEE, 2017.
|
[23] |
CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 15th European Conference on Computer Vision--ECCV 2018. Munich: Springer, 2018.
|
[24] |
SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018.
|
[25] |
PRABHU B V B, LAKSHMI R, ANKITHA R, et al. RescueNet: YOLO-based object detection model for detection and counting of flood survivors[J]. Modeling Earth Systems and Environment, 2022, 8(4): 4509-4516. DOI: 10.1007/s40808-022-01414-6.
|
[26] |
LIU Shihan, ZHA Junlin, SUN Jian, et al. EdgeYOLO: an edge-real-time object detector[C]// Proceedings of the 42nd Chinese Control Conference (CCC). Tianjin:IEEE, 2023.
|
[27] |
LIANG Siyuan, WU Hao, ZHEN Li, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360. DOI: 10.1109/TITS.2022.3158253.
|