Journal of Geodesy and Geoinformation Science ›› 2021, Vol. 4 ›› Issue (3): 13-24.doi: 10.11947/j.JGGS.2021.0302
• Special Issue • Previous Articles Next Articles
Petar DONEV1(),Hong WANG1(),Shuhong QIN2,Pengyu MENG1,Jinbo LU1
Received:
2020-09-15
Accepted:
2021-01-15
Online:
2021-09-20
Published:
2021-10-09
Contact:
Hong WANG
E-mail:petardonev@hhu.edu.cn;hongwang@hhu.edu.cn
About author:
Petar DONEV E-mail: Petar DONEV,Hong WANG,Shuhong QIN,Pengyu MENG,Jinbo LU. Estimating the Forest Above-ground Biomass Based on Extracted LiDAR Metrics and Predicted Diameter at Breast Height[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(3): 13-24.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.2
Summary of extracted LiDAR metrics from the UAV LiDAR data"
Metrics | Description |
---|---|
Elev kurtosis | Kurtosis of the heights of all points above 2m |
Elev AAD | The absolute average deviation of the heights of all points above 2m |
Elev MAD median | Median absolute deviation of the median height |
Elev percentile # | Height Percentile (01, 05, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 99) |
Elev maximum | Maximum height of all points above 2m |
Elev mean | Mean height of all points above 2m |
Elev stddev | The standard deviation of the heights of all points above 2m |
Elev variance | A variance of the heights of all points above 2m |
Elev CV | Coefficient of variation of the heights of all points above 2m |
Elev IQ | An interquartile distance of the height of all points above 2m |
Elev skewness | The skewness of the heights of all points above 2m |
Elev L # | L-moments of height (L1, L2, L3, L4) |
Elev MAD mode | Mode deviation of the median height |
Elev L CV | L-moment Coefficient of Variation of height |
Elev L skewness | L-moment Skewness of the height |
Elev L kurtosis | L-moment Kurtosis of the height |
Elev SQRT mean SQ | Height quadratic mean |
Elev CURT means CUBE | Height cubic mean |
LP | Percentage of last returns above ground |
Canopy cover above 2m | Percentage first returns above 2.00 |
Canopy relief ratio | The proportion of the Canopy and the relief |
Tab.3
Field-estimated AGB in the eight plots, based on the allometric equation for Robinia Pseudoacacia forest"
Plot ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Number of trees | 43 | 70 | 47 | 98 | 91 | 87 | 46 | 47 |
H mean/m | 7.38 | 11.74 | 12.64 | 11.22 | 8.42 | 10.90 | 10.21 | 13.42 |
SD | 1.13 | 3.29 | 1.66 | 2.25 | 1.47 | 1.75 | 1.49 | 2.22 |
DBH mean/cm | 14.19 | 17.65 | 18.40 | 17.87 | 12.55 | 13.18 | 15.88 | 17.29 |
SD | 3.85 | 4.80 | 5.03 | 7.68 | 5.39 | 4.21 | 5.51 | 6.67 |
AGB mean/(mg/hm2) | 19.64 | 68.84 | 50.57 | 92.63 | 39.85 | 49.18 | 33.42 | 50.70 |
SD | 7.49 | 23.18 | 20.47 | 43.55 | 14.26 | 18.24 | 11.71 | 25.03 |
Tab.4
Accuracy results of the UAV LiDAR ITS method compared with field data in the eight plots"
Plot ID | Trees per plot | Segmented trees | Omitted trees | r | p | F | Accuracy/(%) |
---|---|---|---|---|---|---|---|
1 | 59 | 45 | 14 | 0.76 | 1 | 0.87 | 76 |
2 | 80 | 71 | 9 | 0.89 | 1 | 0.94 | 89 |
3 | 59 | 47 | 12 | 0.80 | 1 | 0.89 | 80 |
4 | 125 | 104 | 21 | 0.83 | 1 | 0.91 | 83 |
5 | 114 | 98 | 16 | 0.86 | 1 | 0.92 | 86 |
6 | 105 | 87 | 18 | 0.83 | 1 | 0.91 | 83 |
7 | 52 | 46 | 6 | 0.88 | 1 | 0.94 | 88 |
8 | 63 | 47 | 16 | 0.75 | 1 | 0.85 | 75 |
Total | 657 | 545 | 112 | 0.83 | 1 | 0.91 | 83 |
Tab.7
Estimation error of the AGB prediction in the eight plots with the MLR, RF and the SVR method"
Plot ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Error≤20% /(%) |
---|---|---|---|---|---|---|---|---|---|
Number of trees | 43 | 70 | 47 | 98 | 91 | 87 | 46 | 47 | |
MLR-AGB/(mg/hm2) mean | 17.44 | 85.71 | 61.62 | 94.58 | 47.71 | 68.91 | 38.81 | 69.63 | 53 |
SD | 13.87 | 19.13 | 23.58 | 31.11 | 22.82 | 17.22 | 24.22 | 24.55 | |
RF-AGB/(mg/hm2) mean | 18.09 | 81.96 | 60.98 | 90.58 | 47.08 | 68.16 | 39.59 | 63.30 | 60 |
SD | 10.55 | 19.99 | 21.48 | 26.91 | 14.52 | 17.09 | 13.25 | 16.10 | |
SVR-AGB/(mg/hm2) mean | 17.93 | 80.48 | 61.39 | 75.28 | 47.35 | 68.75 | 39.05 | 59.09 | 62 |
SD | 7.04 | 21.81 | 21.09 | 19.93 | 13.34 | 17.82 | 11.93 | 13.48 |
[1] |
URBAZAEV M, THIEL C, CREMER F, et al. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico[J]. Carbon Balance and Management, 2018,13(1):1-20.
doi: 10.1186/s13021-017-0089-6 |
[2] |
CHEN Lin, REN Chunying, ZHANG Bai, et al. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery[J]. Forests, 2018,9(10):582-602.
doi: 10.3390/f9100582 |
[3] | VASHUM K T, JAYAKUMAR S. Methods to estimate above-ground biomass and carbon stock in natural forests - a review[J]. Journal of Ecosystem & Ecography, 2012,2(4):1-7. |
[4] | SMITH M L, ANDERSON J, FLADELAND M. Forest canopy structural properties[M]//HOOVER C M. Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach. Dordrecht: Springer, 2008. |
[5] | CONDIT R. Methods for estimating aboveground biomass of forest and replacement vegetation in the tropics[J]. Center for Tropical Forest Science Research Manual, 2008,73:1-73. |
[6] | UYKUN C. Above-ground biomass and carbon estimations and recommendations for forests in turkey[D]. Michigan: Michigan Technological University, 2018. |
[7] |
LARJAVAARA M, MULLER-LANDAU H C. Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest[J]. Methods in Ecology and Evolution, 2013,4(9):793-801.
doi: 10.1111/2041-210X.12071 |
[8] | LATIFI H. Characterizing forest structure by means of remote sensing: a review[M]//ESCALANTE B. Remote Sensing - Advanced Techniques and Platforms. Shanghai: InTech, 2012: 13. |
[9] | DUBE T. Optical remote sensing of aboveground forest biomass and carbon stocks in resource-constrained african environments[D]. Pietermaritzburg: University of Kwa Zulu-Natal, 2015. |
[10] |
DONG Lixin, TANG Shihao, MIN Min, et al. Aboveground forest biomass based on OLSR and an ANN model integrating LiDAR and optical data in a mountainous region of China[J]. International Journal of Remote Sensing, 2019,40(15):6059-6083.
doi: 10.1080/01431161.2019.1587201 |
[11] |
LI Yingchang, LI Mingyang, LI Chao, et al. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms[J]. Scientific Reports, 2020,10(1):1-12.
doi: 10.1038/s41598-019-56847-4 |
[12] | LU Dengsheng, CHEN Qi, WANG Guangxing, et al. Aboveground forest biomass estimation with landsat and LiDAR data and uncertainty analysis of the estimates[J]. International Journal of Forestry Research, 2012,2012(4):436537. |
[13] |
MASCARO J, ASNER G P, DAVIES S, et al. These are the days of lasers in the jungle[J]. Carbon Balance and Management, 2014,9(1):1-3.
doi: 10.1186/1750-0680-9-1 |
[14] | LIM K, TREITZ P, WULDER M, et al. LiDAR remote sensing of forest structure[J]. Progress in Physical Geography, 2003,27(1):88-106. |
[15] |
LU Dengsheng, CHEN Qi, WANG Guangxing, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2016,9(1):63-105.
doi: 10.1080/17538947.2014.990526 |
[16] | IVANOVS J, LAZDINS A. Evaluation of tree height and number of trees using lidar data[J]. Engineering for Rural Development, 2018,05:23-25. |
[17] |
KWAK D A, LEE W K, LEE J H, et al. Detection of individual trees and estimation of tree height using LiDAR data[J]. Journal of Forest Research, 2007,12(6):425-434.
doi: 10.1007/s10310-007-0041-9 |
[18] |
NEUENSCHWANDER A, PITTS K. The ATL08 land and vegetation product for the ICESat-2 Mission[J]. Remote Sensing of Environment, 2019,221:247-259.
doi: 10.1016/j.rse.2018.11.005 |
[19] |
EDSON C, WING M G. Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements[J]. Remote Sensing, 2011,3(11):2494-2528.
doi: 10.3390/rs3112494 |
[20] | SAČKOV I, SCHEER A, BUCHA T. Predicting forest stand variables from airborne LiDAR data using a tree detection method in Central European forests[J]. Central European Forestry Journal, 2019,66(3-4):191-197. |
[21] |
HAN Liang, YANG Guijun, DAI Huayang, et al. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data[J]. Plant Methods, 2019,15(1):1-19.
doi: 10.1186/s13007-018-0385-5 |
[22] |
SWINFIELD T, LINDSELL J A, WILLIAMS J V, et al. Accurate measurment of tropical forest canopy heights and aboveground carbon using structure from motion[J]. Remote Sensing, 2019,11(8):928.
doi: 10.3390/rs11080928 |
[23] |
SWINFIELD T, LINDSELL J A, WILLIAMS J V, et al. Accurate measurment of tropical forest canopy heights and aboveground carbon using structure from motion[J]. Remote Sensing, 2019,11(8):928.
doi: 10.3390/rs11080928 |
[24] |
KARPINA M, JARZABEK-RYCHARD M, TYMKÓW P, et al. Uav-based automatic tree growth measurement for biomass estimation[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B8:685-688.
doi: 10.5194/isprs-archives-XLI-B8-685-2016 |
[25] |
WIESER M, MANDLBURGER G, HOLLAUS M, et al. A case study of UAS borne laser scanning for measurement of tree stem diameter[J]. Remote Sensing, 2017,9(11):1154.
doi: 10.3390/rs9111154 |
[26] |
MACPHEE C, KERSHAW J A, WEISKITTEL A R, et al. Comparison of approaches for estimating individual tree height-diameter relationships in the Acadian forest region[J]. Forestry: An International Journal of Forest Research, 2018,91(1):132-146.
doi: 10.1093/forestry/cpx039 |
[27] |
LIU Mu, FENG Zhongke, ZHANG Zhixiang, et al. Development and evaluation of height diameter at breast models for native Chinese Metasequoia[J]. PLoS One, 2017,12(8):e0182170.
doi: 10.1371/journal.pone.0182170 |
[28] | CAO Q V, DEAN T J. Predicting diameter at breast height from total height and crown length[C]//Proceedings of the 15th Biennial Southern Silvicultural Research Conference. Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2013: 201-205. |
[29] |
LU Jinbo, WANG Hong, QIN Shuhong, et al. Estimation of aboveground biomass of Robinia Pseudoacacia forest in the Yellow River Delta based on UAV and Backpack LiDAR point clouds[J]. International Journal of Applied Earth Observation and Geoinformation, 2020,86:102014.
doi: 10.1016/j.jag.2019.102014 |
[30] | ZHANG Jianfeng. Strategies for reclaiming and ameliorating saline soil in the Yellow River Delta region[M]//ZHANG Jianfeng. Coastal Saline Soil Rehabilitation and Utilization Based on Forestry Approaches in China. Berlin, Heidelberg: Springer, 2013. |
[31] |
WANG Hong, ZHAO Yu, PU Ruiliang, et al. Mapping Robinia pseudoacacia forest health conditions by using combined spectral, spatial, and textural information extracted from IKONOS imagery and random forest classifier[J]. Remote Sensing, 2015,7(7):9020-9044.
doi: 10.3390/rs70709020 |
[32] |
WANG Hong, ZHONG Yi, PU Ruiliang, et al. Dynamic analysis of Robinia Pseudoacacia forest health levels from 1995 to 2013 in the Yellow River Delta, China using multitemporal landsat imagery[J]. International Journal of Remote Sensing, 2018,39(12):4232-4253.
doi: 10.1080/01431161.2018.1455236 |
[33] |
BALSI M, ESPOSITO S, FALLAVOLLITA P, et al. Single-tree detection in high-density LiDAR data from UAV-based survey[J]. European Journal of Remote Sensing, 2018,51(1):679-692.
doi: 10.1080/22797254.2018.1474722 |
[34] |
CORTE A P D, REX F E, DE ALMEIDA D R A, et al. Measuring individual tree diameter and height using GatorEye high-density UAV-lidar in an integrated crop-livestock-forest system[J]. Remote Sensing, 2020,12(5):863.
doi: 10.3390/rs12050863 |
[35] |
JERONIMO S M A, KANE V R, CHURCHILL D J, et al. Applying LiDAR individual tree detection to management of structurally diverse forest landscapes[J]. Journal of Forestry, 2018,116(4):336-346.
doi: 10.1093/jofore/fvy023 |
[36] | MCGAUGHEY R J. FUSION/LDV: Software for LiDAR data analysis and visualization[J]. US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2009,123(2). 2018. |
[37] | POPESCU S C, WYNNE R H. Seeing the trees in the forest[J]. Photogrammetric Engineering & Remote Sensing, 2004,70(5):589-604. |
[38] |
POPESCU S C, WYNNE R H, NELSON R F. Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based variable window size[J]. Computers and Electronics in Agriculture, 2002,37(1-3):71-95.
doi: 10.1016/S0168-1699(02)00121-7 |
[39] | DEMIRASLAN T. Estimation of dbh using tree variables derived from aerial lidar for ford forest, Baraga, Michigan[D]. Michigan: Michigan Technological University, 2018. |
[40] |
MALEK S, MIGLIETTA F, GOBAKKEN T, et al. Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques[J]. iForest-Biogeosciences and Forestry, 2019,12(3):323-329.
doi: 10.3832/ifor2980-012 |
[41] |
IGE P O, AKINYEMI G O, SMITH A S. Nonlinear growth functions for modeling tree height-diameter relationships for Gmelina arborea (Roxb.) in South-West Nigeria[J]. Forest Science and Technology, 2013,9(1):20-24.
doi: 10.1080/21580103.2013.773662 |
[42] |
SUN Xiaofang, LI Bai, DU Zhengping, et al. Surface modelling of forest aboveground biomass based on remote sensing and forest inventory data[J]. Geocarto International. 2021,36(14):1549-1564.
doi: 10.1080/10106049.2019.1655799 |
[43] |
LI Aihua, DHAKAL S, GLENN N F, et al. Lidar aboveground vegetation biomass estimates in shrublands: prediction, uncertainties and application to coarser scales[J]. Remote Sensing, 2017,9(9):903.
doi: 10.3390/rs9090903 |
[44] | SHARIFI A, AMINI J, TATEISHI R. Estimation of forest biomass using multivariate relevance vector regression[J]. Photogrammetric Engineering & Remote Sensing, 2016,82(1):41-49. |
[45] | GOUTTE C, GAUSSIER E. A probabilistic interpretation of precision, recall and F-Score, with implication for evaluation[C]//Proceedings of the 27th European Conference on IR Research Advances in Information Retrieval. Santiago de Compostela, Spain: Springer, 2005: 345-359. |
[46] |
SPIESS A N, NEUMEYER N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a monte Carlo approach[J]. BMC Pharmacology, 2010,10(1):1-11.
doi: 10.1186/1471-2210-10-1 |
[47] |
TIAN Jiarong, DAI Tingting, LI Haidong, et al. A novel tree height extraction approach for individual trees by combining TLS and UAV image-based point cloud integration[J]. Forests, 2019,10(7):537.
doi: 10.3390/f10070537 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||