Journal of Geodesy and Geoinformation Science ›› 2022, Vol. 5 ›› Issue (1): 91-102.doi: 10.11947/j.JGGS.2022.0109
Wensong LIU1(),Xinyuan JI1,Jie LIU2,Fengcheng GUO1(),Zongqiao YU1
Received:
2021-09-18
Accepted:
2022-01-03
Online:
2022-03-20
Published:
2022-03-31
Contact:
Fengcheng GUO
E-mail:wensongliu@jsnu.edu.cn;fchguo@jsnu.edu.cn
About author:
Wensong LIU(1988-), male, PhD, majors in images processing and change detection. E-mail: Supported by:
Wensong LIU,Xinyuan JI,Jie LIU,Fengcheng GUO,Zongqiao YU. A Novel Unsupervised Change Detection Method with Structure Consistency and GFLICM Based on UAV Images[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 91-102.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
Quantitative evaluation of different image generation algorithms (Study area 1)"
Methods | FA/(%) | OF/(%) | OA/(%) | κ |
---|---|---|---|---|
Diff-GFLICM | 18.45 | 3.20 | 78.35 | 0.39 |
Ratio-GFLICM | 18.95 | 4.51 | 76.54 | 0.32 |
MAD-GFLICM | 6.41 | 10.22 | 83.37 | 0.34 |
IRMAD-GFLICM | 5.58 | 10.26 | 84.16 | 0.34 |
CVA-GFLICM | 13.75 | 3.71 | 82.54 | 0.44 |
Proposed method | 3.91 | 3.97 | 92.12 | 0.62 |
Tab.3
Accuracy evaluation of different change detection algorithms (Study area 2)"
Method | FA/(%) | OF/(%) | OA/(%) | κ |
---|---|---|---|---|
Diff-GFLICM | 16.35 | 6.82 | 76.83 | 0.42 |
Ratio-GFLICM | 15.77 | 6.75 | 77.48 | 0.44 |
MAD-GFLICM | 10.17 | 8.72 | 81.11 | 0.33 |
IRMAD-GFLICM | 8.89 | 8.23 | 82.88 | 0.35 |
CVA-GFLICM | 9.34 | 5.31 | 85.35 | 0.49 |
SCM-Kmeans | 6.99 | 5.86 | 87.15 | 0.52 |
SCM-FCM | 7.21 | 5.87 | 86.92 | 0.52 |
SCM-Otsu | 5.98 | 6.97 | 87.05 | 0.54 |
SCM-FLICM | 5.11 | 5.70 | 89.19 | 0.57 |
Proposed method | 4.63 | 5.33 | 90.04 | 0.58 |
[1] | ZHANG Jixian, LIU Fei, WANG Jian. Review of the light-weighted and small UAV system for aerial photography and remote sensing[J]. National Remote Sensing Bulletin, 2021, 25(17): 708-7243. |
[2] |
BRISCO B, SCHMITT A, MURNAGHAN, K, et al. SAR polarimetric change detection for flooded vegetation[J]. International Journal of Digital Earth, 2013, 6(2): 103-114.
doi: 10.1080/17538947.2011.608813 |
[3] |
AJADI O A, MEYER F J, WEBLEY P W. Change detection in synthetic aperture radar images using a multiscale-driven approach[J]. Remote Sensing, 2016, 8(6): 482.
doi: 10.3390/rs8060482 |
[4] | BRAUN A. Assessment of building damage in Raqqa during the Syrian civil war using time-series of radar satellite imagery[J]. GI_Forum, 2018, 6(1): 228-242. |
[5] |
CHENG Bo, CUI Shiai, MA Xiaoxiao, et al. Research on an urban building area extraction method with high-resolution PolSAR imaging based on adaptive neighborhood selection neighborhoods for preserving embedding[J]. ISPRS International Journal of Geo-Information, 2020, 9(2): 109-123.
doi: 10.3390/ijgi9020109 |
[6] | BAN Yifang, YOUSIF O. Change detection techniques: a review[M]// BAN Yifang. Multitemporal Remote Sensing: Methods and Applications. Cham: Springer, 2016, 20: 19-43. |
[7] | SUI Haigang, FENG Wenqing, LI Wenzhuo, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 043(12): 1885-1898. |
[8] |
CASTELLANA L, D’ADDABBO A, PASQUARIELLO G. A composed supervised/unsupervised approach to improve change detection from remote sensing[J]. Pattern Recognition Letters, 2007, 28(4): 405-413.
doi: 10.1016/j.patrec.2006.08.010 |
[9] |
ZHANG Liangpei, WU Chen. Advance and future development of change detection for multi-temporal remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1447-1459. DOI: 10.11947/j.AGCS.2017.20170340.
doi: 10.11947/j.AGCS.2017.20170340 |
[10] |
VOLPI M, TUIA D, BOVOLO F, et al. Supervised change detection in VHR images using contextual information and support vector machines[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 20: 77-85.
doi: 10.1016/j.jag.2011.10.013 |
[11] |
ROY M, GHOSH S, GHOSH A. A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system[J]. Information Sciences, 2014, 269: 35-47.
doi: 10.1016/j.ins.2014.01.037 |
[12] | SERRA P, PONS X, SAURÍ D. Post-classification change detection with data from different sensors: some accuracy considerations[J]. International Journal of Remote Sensing, 20103, 24(23): 49753311-49763340. |
[13] |
HULLEY G, VERAVERBEKE S, HOOK S. Thermal-based techniques for land cover change detection using a new dynamic MODIS multispectral emissivity product (MOD21)[J]. Remote Sensing of Environment, 2014, 140: 755-765.
doi: 10.1016/j.rse.2013.10.014 |
[14] | HECHELTJEN A, THONFELD F, MENZ G. Recent advances in remote sensing change detection-a review[M]//MANAKOS I, BRAUN M. Land Use and Land Cover Mapping in Europe: Practices & Trends. Dordrecht: Springer, 2014. 18: 145-178. |
[15] |
ZHU Zhe, WOODCOCK C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014, 144: 152-171.
doi: 10.1016/j.rse.2014.01.011 |
[16] |
ALBERGA V. Similarity measures of remotely sensed multi-sensor images for change detection applications[J]. Remote Sensing, 2009, 1(3): 122-143.
doi: 10.3390/rs1030122 |
[17] |
ZHANG Zhiqiang, ZHANG Xinchang, XIN Qinchuan, et al. Combining the pixel-based and object-based methods for building change detection using high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 102-112. DOI: 10.11947/j.AGCS.2018.20170483.
doi: 10.11947/j.AGCS.2018.20170483 |
[18] |
VIEIRA M A, FORMAGGIO A R, RENNÓ C D, et al. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas[J]. Remote Sensing of Environment, 2012, 123: 553-562.
doi: 10.1016/j.rse.2012.04.011 |
[19] |
YE Su, CHEN Dongmei, YU Jie. A targeted change-detection procedure by combining change vector analysis and post-classification approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 115-124.
doi: 10.1016/j.isprsjprs.2016.01.018 |
[20] |
GONG Jinqi, LIU Zhengjun, YAN Qin, et al. Object-oriented island land cover change detection by iteratively reweighted multivariate statistical analysis[J]. Marine Geodesy, 2017, 40(2-3): 87-103.
doi: 10.1080/01490419.2017.1304472 |
[21] | JIA Meng, WANG Lei. Novel class-relativity non-local means with principal component analysis for multitemporal SAR image change detection[J]. International Journal of Remote Sensing, 20187, 39(4): 1068-1091. |
[22] |
LU Meng, PEBESMA E, SANCHEZ A, et al. Spatio-temporal change detection from multidimensional arrays: detecting deforestation from MODIS time series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 227-236.
doi: 10.1016/j.isprsjprs.2016.03.007 |
[23] |
WU Chen, DU B, CUI Xiaohui, et al. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion[J]. Remote Sensing of Environment, 2017, 199: 241-255.
doi: 10.1016/j.rse.2017.07.009 |
[24] |
MOGHIMI A, MOHAMMADZADEH A, KHAZAI S. Integrating thresholding with level set method for unsupervised change detection in Multitemporal SAR images[J]. Canadian Journal of Remote Sensing, 2017, 43(5): 412-431.
doi: 10.1080/07038992.2017.1342205 |
[25] |
LI Yufeng, HE Wei. Research on SAR image change detection algorithm based on hybrid genetic FCM and image registration[J]. Multimedia Tools and Applications, 2017, 76(13): 15137-15153.
doi: 10.1007/s11042-017-4687-9 |
[26] |
CHEN Pengyun, JIA Zhenhong, YANG Jie, et al. Unsupervised change detection of SAR images based on an improved NSST algorithm[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(5): 801-808.
doi: 10.1007/s12524-017-0740-4 |
[27] | SUN Yuli, LEI Lin, LI Xiao, et al. Structure consistency-based graph for unsupervised change detection with homogeneous and heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 760: 1-21. |
[28] | SUN Yuli, LEI Lin, LI Xiao, et al. Nonlocal patch similarity based heterogeneous remote sensing change detection[J]. Pattern Recognition, 20210, 109: 107598. |
[29] |
WANG Jun, YANG Xuezhi, YANG Xiangyu, et al. Unsupervised change detection between SAR images based on hypergraphs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 61-72.
doi: 10.1016/j.isprsjprs.2020.04.007 |
[1] | Yun ZHANG. Smart Photogrammetric and Remote Sensing Image Processing for Very High Resolution Optical Images— Examples from the CRC-AGIP Lab at UNB [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 17-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||