Journal of Geodesy and Geoinformation Science ›› 2018, Vol. 1 ›› Issue (1): 61-78.doi: 10.11947/j.JGGS.2018.0108
Lei YAN1,Ruihua ZHANG1,Yanbiao SUN2
Received:
2018-01-07
Accepted:
2018-04-07
Online:
2018-12-20
Published:
2019-11-20
About author:
Lei YAN(1956—),male,PhD,professor, majors in technology of high resolution imaging and remote sensing calibration. E-mail:lyan@pku.edu.cn
Supported by:
Lei YAN,Ruihua ZHANG,Yanbiao SUN. A Preliminary Study on the Theory of Polar Coordinates Digital Photogrammetry and the Coordinate System of Spatial Information[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1): 61-78.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
The convergence of G2O,sSBA,and ParallaxBA for Vaihingen data sets"
Vaihingen | G20 GN Cartesian coordinates | G20 LM Cartesian coordinates | sSBA Cartesian coordinates | ParallaxBA GN Polar coordinates | ParallaxBA LM Polar coordinates | |
---|---|---|---|---|---|---|
Initial MSE | 144707.21 | 144707.21 | 144707.21 | 144707.18 | 144710.18 | |
Convergence MSE | N/A | 135.060663 | 0.126012 | 0.126012 | 0.126012 | |
Number of iterations | N/A | 200 | 8 | 6 | 20 | |
Linear equation | N/A | 214 | 8 | 6 | 25 | |
Single iteration time | Win | N/A | N/A | N/A | 1.21 | 1.21 |
Linux | N/A | 1.2 | 0.8 | 1.45 | 1.45 | |
total time | Win | N/A | N/A | N/A | 8.46 | 26.43 |
Linux | N/A | 263.6 | 6.8 | 8.86 | 35.24 |
Tab.2
The convergence of G2O,sSBA,and ParallaxBA for College data sets"
College | G20 GN Cartesian coordinates | G20 LM Cartesian coordinates | sSBA Cartesian coordinates | ParallaxBA GN Polar coordinates | ParallaxBA LM Polar coordinates | |
---|---|---|---|---|---|---|
Initial MSE | 202329.64 | 202329.64 | 202329.64 | 202329.44 | 202329.44 | |
Convergence MSE | N/A | 25.723307 | 9.272481 | 0.734738 | 0.734738 | |
Number of iterations | N/A | 200 | 200 | 12 | 17 | |
Linear equation | N/A | 349 | 228 | 12 | 17 | |
Single iteration time | Win | N/A | N/A | N/A | 2.71 | 2.71 |
Linux | N/A | 2.51 | 2.72 | 3.85 | 3.85 | |
total time | Win | N/A | N/A | N/A | 37.14 | 49.68 |
Linux | N/A | 674.83 | 453.22 | 51.55 | 69.58 |
Tab.3
The convergence of G2O, sSBA, and ParallaxBA for Village data sets"
Village | G20 GN Cartesian coordinates | G20 LM Cartesian coordinates | sSBA Cartesian coordinates | ParallaxBA GN Polar coordinates | ParallaxBA LM Polar coordinates | |
---|---|---|---|---|---|---|
With or without ground control points | Yes | Yes | Yes | No | No | |
Initial MSE | 28174.10 | 28174.10 | 28968.73 | 28170.98 | 28170.98 | |
Convergence MSE | N/A | 0.083716 | 0.083716 | 0.083716 | 0.083716 | |
Number of iterations | N/A | 34 | 8 | 6 | 11 | |
Linear equation | N/A | 55 | 8 | 6 | 11 | |
Single iteration time | Win | N/A | N/A | N/A | 0.67 | 0.67 |
Linux | N/A | 0.62 | 0.56 | 0.96 | 0.96 | |
total time | Win | N/A | N/A | N/A | 5.07 | 7.92 |
Linux | N/A | 27.46 | 4.54 | 6.98 | 12.23 |
Tab.7
The comparison table between the original method and the introduction of polar coordinate method"
Comparison element | Marine maritime | ||
---|---|---|---|
Quantitative characteristics | Data validity | Target Recognition | |
Original method | weak | common | weak |
Polar coordinate method | Unmanned boat monitoring calibration | Polar coordinates change angle, good | High recognition |
Tab.8
Comparison of the characteristics of Cartesian and polar coordinates"
Comparison element | Normal image (rectangular coordinate) | High overlap image | Image accuracy- efficiency-anti- interference | large angle | Changing posture | Aviation array Space array | Compared with the national military standard data organization storage |
---|---|---|---|---|---|---|---|
Original method | Processable | Easy singularity, sometimes divergent | Common | difficult | difficult | Different coordinates | Right angle- radius conversion |
Polar coordinate method | Processable | Greatly avoid singularity, no divergence | Increase in magnitude | Convenient | Convenient | Unified coordinates | No conversion required |
[1] |
WANG Zhizhuo . The Principle of Photogrammetry[J]. Bulletin of Surveying and Mapping, 1979,4:50.
doi: 10.1016/j.brachy.2019.05.006 pmid: 31230942 |
[2] | LUO He . A General Analytical Method of Aerial Triangulation[J]. Acta Geodaetica et Cartographica Sinica, 1958,1:3-22. |
[3] | ZHOU Ka . Spatial Aerotriangulation[J]. China Civil Engineering Journal, 1956,3:59-78. |
[4] |
ZHAO L, HUANG S, SUN Y, YAN L . ParallaxBA:Bundle Adjustment Using Parallax Angle Feature Parametrization[J]. International Journal of Robotics Research, 2015,34(4-5):493-516.
doi: 10.1177/0278364914551583 |
[5] | ZHAO L, HUANG S, YAN L , et al. Parallax Angle Parametrization for Monocular SLAM [C].IEEE International Conference on Robotics and Automation,IEEE, 2011, 3117-3124. |
[6] |
SUN Y, SUN H, YAN L , et al. RBA:Reduced Bundle Adjustment for Oblique Aerial Photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,121:128-142.
doi: 10.1016/j.isprsjprs.2016.09.005 |
[7] | ZHAO L, HUANG S, YAN L , et al. Large-scale Monocular SLAM by Local Bundle Adjustment and Map Joining [C].International Conference on Control Automation Robotics and Vision.IEEE, 2011, 431-436. |
[8] | SUN Yanbiao . Study on Convergence and Convergence Speed of Polar Coordinate Beam Method Adjustment Model[D]. Doctoral Dissertation of Peking University, 2015. |
[9] |
CIVERA J, DAVISON A J, MONTIEL J M M . Inverse Depth Parametrization for Monocular SLAM[J]. IEEE Transactions on Robotics, 2008,24(5):932-945.
doi: 10.1109/TRO.2008.2003276 |
[10] | SOLA J . Consistency of the Monocular EKF-SLAM Algorithm for Three Different Landmark Parametrizations [C].IEEE International Conference on Robotics and Automation.IEEE, 2010, 3513-3518. |
[11] | MONTIEL J M M, CIVERA J, DAVISON A J . Unified Inverse Depth Parameterization for Monocular SLAM [C].Robotics Science and Systems, 2006. |
[12] | CIVERA J, DAVISON A J, MONTIEL J M M . Inverse Depth to Depth Conversion for Monocular SLAM [C].IEEE International Conference on Robotics and Automation.IEEE, 2007, 2778-2783. |
[13] | CHENG Chengqi, GUAN Li . Global Dissection Model and Address Coding Based on Map Extension[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(3):295-302. |
[14] | CHENG Chengqi et al. The Spatial Information Division Organization Introduction[M]. Beijing: Science Press, 2012. |
[15] | CHENG Chengqi, SONG Shuhua, P U Guoliang , et al. A Preliminary Study on the Global Unique GeoID Model of Spatial Information[J]. Science of Surveying and Mapping, 2010,35(6):73-75,264. |
[16] | ZHAO Liang , MonoSLAM:Parameterization,Bundle Adjustment and Sub Graph Merging Model Theory[M]. Doctoral Dissertation of Peking University, 2012. |
[17] | BROWN D C . The Bundle Adjustment:Progress and Prospects[J]. International Archives of Photogrammetry Papers, 1976,21:29-33. |
[18] | SLAMA C C . Manual of Photogrammetry,Fourth Edition[M]. ASPRS, 1980. |
[19] |
COOPER M A R, CROSS P A . Statistical Concepts and Their Application in Photogrammetry and Surveying[J]. Photogrammetric Record, 1991,13(77):645-678.
doi: 10.1111/j.1477-9730.1991.tb00728.x |
[20] |
YAN L, CHEN R, SUN H , et al. A Novel Bundle Adjustment Method with Additional Ground Control Point Constraint[J]. Remote Sensing Letters, 2017,8(1):68-77.
doi: 10.1080/2150704X.2016.1235809 |
[21] |
SUN Y, ZHAO L, HUANG S, YAN L . L-MATH Container Loading Mathjax-SIFT:SIFT Feature Extraction and Matching for Large Images in Large-scale Aerial Photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,91:1-16.
doi: 10.1016/j.isprsjprs.2014.02.001 |
[22] |
SUN Y, ZHAO L, HUANG S, YAN L . Line Matching Based on Planar Homography for Stereo Aerial Images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,104:1-17.
doi: 10.1016/j.isprsjprs.2014.12.003 |
[23] | SUN Y, LIU X, CHEN R, WAN J, WANG Q , et al. Application and Performance Analysis of a New Bundle Adjustment Model[J]. ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences, 2017, IV- 2/W4:273-278. |
[24] | TONG Xiaohua, YE Zhen, LIU Shijie . Key Technology and Application of High Resolution Satellite Flutter Detection Compensation[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1500-1508. |
[25] | LI Ying, ZHU Xueyuan, CAO Yan , et al. The Review of Marine Remote Sensing Monitoring Technology[J]. Marine Science Bulletin, 2015,34(2):121-129. |
[1] | Zhilin LI,Peichao GAO,Zhu XU. Information Theory of Cartography: An Information-theoretic Framework for Cartographic Communication [J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 1-16. |
[2] | Mi WANG,Zhiqi ZHANG,Zhipeng DONG,Shuying JIN,Hongbo SU. Stream-computing of High Accuracy On-board Real-time Cloud Detection for High Resolution Optical Satellite Imagery [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 50-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||