Journal of Geodesy and Geoinformation Science ›› 2022, Vol. 5 ›› Issue (1): 73-90.doi: 10.11947/j.JGGS.2022.0108
Previous Articles Next Articles
Received:
2021-06-25
Accepted:
2021-12-06
Online:
2022-03-20
Published:
2022-03-31
About author:
Zhaohui XUE (19 —), male, PhD, youth professor, and his interests include hyperspectral image classification, time-series image analysis, pattern recognition, and machine learning. E-mail: Supported by:
Zhaohui XUE,Xiangyu NIE. Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization for Hyperspectral Image Classification[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(1): 73-90.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
Algorithm 1: M-ADMM for Solving LRSR. |
---|
Input: Data set A, dictionary B, regularization parameters α and β Output:Coefficient matrix X and noise matrix E Initialize: X0=Z0=J0=0, E0=0, While not converged do Update the variable Z according to Eq. (6) Update the variable J according to Eq. (7) Update the variable E according to Eq. (8) Update the variable X according to Eq. (10) Update the Lagrange multipliers Q1, Q2, and Q3 Update the parameter μ μk+1=min(λμk,μmax) Update k: k=k+1 End while |
"
Algorithm 2: Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization (LRSR-ANR). |
---|
Input: Data set A, dictionary B, parameters α, β, S, WS Output: Class labels for A Step 1: Select a certain percentage of training samples from each class in the ground-truth map to construct the dictionary. Step 2: Solve the LRSR problem using Algorithm 1. Step 3: Generate the neighborhood sample set Yi with i-th test sample yi1 as the center pixel. Step 4: Calculate similarities according to Eq. (11) and remove heterogeneous pixels. Step 5: Select pixels with the smallest residual according to Eq. (14). Step 6: Determine the final class label according to Eq. (15). |
Tab.1
Number of training and test samples used for the Indian Pines data set (10% for training)"
Class | Name | Training | Test | Total | |||
---|---|---|---|---|---|---|---|
1 | Alfalfa | 5 | 41 | 46 | |||
2 | Corn-notill | 143 | 1285 | 1428 | |||
3 | Corn-mintill | 83 | 747 | 830 | |||
4 | Corn | 24 | 213 | 237 | |||
5 | Grass-pasture | 49 | 434 | 483 | |||
6 | Grass-trees | 73 | 657 | 730 | |||
7 | Grass-pasture-mowed | 3 | 25 | 28 | |||
8 | Hay-windrowed | 48 | 430 | 478 | |||
9 | Oats | 2 | 18 | 20 | |||
10 | Soybean-notill | 98 | 874 | 972 | |||
11 | Soybean-mintill | 246 | 2209 | 2455 | |||
12 | Soybean-clean | 60 | 533 | 593 | |||
13 | Wheat | 21 | 184 | 205 | |||
14 | Woods | 127 | 1138 | 1265 | |||
15 | Buildings-grass-trees-drives | 39 | 347 | 386 | |||
16 | Stone-steel-towers | 10 | 83 | 93 | |||
Total | 1031 | 9218 | 10249 |
Tab.2
Number of training and test samples used for the Pavia University data set (2% for training)"
Class | Name | Training | Test | Total |
---|---|---|---|---|
1 | Asphalt | 133 | 6498 | 6631 |
2 | Meadows | 373 | 18276 | 18649 |
3 | Gravel | 42 | 2057 | 2099 |
4 | Trees | 62 | 3002 | 3064 |
5 | Metal sheets | 27 | 1318 | 1345 |
6 | Bare soil | 101 | 4928 | 5029 |
7 | Bitumen | 27 | 1303 | 1330 |
8 | Bricks | 74 | 3608 | 3682 |
9 | Shadows | 19 | 928 | 947 |
Total | 858 | 41918 | 42776 |
Tab.3
Number of training and test samples used for the Salinas data set (2% for training)"
Class | Name | Training | Test | Total |
---|---|---|---|---|
1 | Brocoli_green_weeds_1 | 41 | 1968 | 2009 |
2 | Brocoli_green_weeds_2 | 75 | 3651 | 3726 |
3 | Fallow | 40 | 1936 | 1976 |
4 | Fallow_rough_plow | 28 | 1366 | 1394 |
5 | Fallow_smooth | 54 | 2624 | 2678 |
6 | Stubble | 80 | 3879 | 3959 |
7 | Celery | 72 | 3507 | 3579 |
8 | Grapes_untrained | 226 | 11045 | 11271 |
9 | Soil_vinyard_develop | 125 | 6078 | 6203 |
10 | Corn_senesced_green_weeds | 66 | 3212 | 3278 |
11 | Lettuce_romaine_4wk | 22 | 1046 | 1068 |
12 | Lettuce_romaine_5wk | 39 | 1888 | 1927 |
13 | Lettuce_romaine_6wk | 19 | 897 | 916 |
14 | Lettuce_romaine_7wk | 22 | 1048 | 1070 |
15 | Vinyard_untrained | 146 | 7122 | 7268 |
16 | Stone-steel-towers | 37 | 1770 | 1807 |
Total | 1092 | 53037 | 54129 |
Tab.4
The parameter settings of different methods for the three hyperspectral data sets"
Methods | Indian Pines | Pavia University | Salinas |
---|---|---|---|
SR | T=5 | T=10 | T=10 |
JSR | {T=20, WS=5×5} | {T=25, WS=11×11} | {T=20, WS=11×11} |
LRR | β=20 | β=0.2 | β =20 |
LRSR | {α=1, β=20} | {α=1, β=0.2} | {α=1, β=20} |
JLRSR | {α=1, β=20, WS=7×7} | {α=1, β=0.2, WS=15×15} | {α=1, β=20, WS=13×13} |
FRPLRaS | {Rank=30, T=20, WS=5×5} | {Rank=30, T=30, WS=11×11} | {Rank=30, T=30, WS=9×9} |
Ours | {α=1, β=20, WS=7×7, S=0.9} | {α=1, β=0.2, WS=19×19, S=0.725} | {α=1, β=20, WS=13×13, S=0.85} |
Tab.5
Classification accuracy of different methods for the Indian Pines data set (10% for training)(%)"
Class | SVM | SVMCK | SR | JSR | LRR | LRSR | JLRSR | FRPLRaS | LRSR-ANR |
---|---|---|---|---|---|---|---|---|---|
1 | 11.46±12.44 | 82.62±10.10 | 42.44±11.16 | 87.80±12.44 | 70.24±15.70 | 65.61±16.52 | 99.76±0.73 | 89.76±11.33 | 98.54±2.06 |
2 | 76.93±1,87 | 90.17±2.31 | 53.81±2.35 | 88.41±2.15 | 54.60±2.77 | 54.84±2.48 | 90.85±1.60 | 94.76±1.81 | 95.23±0.67 |
3 | 64.70±2.63 | 95.15±1.54 | 51.27±2.43 | 84.47±3.82 | 39.80±2.87 | 40.48±3.30 | 92.99±2.39 | 96.31±1.43 | 93.19±2.21 |
4 | 58.87±8.19 | 83.66±4.34 | 37.09±5.13 | 79.67±6.06 | 48.22±4.87 | 48.78±4.28 | 98.87±2.04 | 92.68±4.14 | 97.93±1.72 |
5 | 88.62±1.59 | 93.57±2.57 | 82.67±2.15 | 94.51±2.96 | 75.12±3.53 | 75.97±3.10 | 92.17±3.26 | 96.90±1.47 | 94.98±1.87 |
6 | 94.89±2.03 | 99.23±0.38 | 92.91±2.18 | 98.63±0.89 | 85.66±3.37 | 86.15±3.22 | 97.79±0.55 | 99.15±0.76 | 99.04±0.23 |
7 | 6.40±11.81 | 49.20±29.21 | 73.20±5.98 | 96.00±3.77 | 88.40±3.50 | 89.20±3.79 | 100.00±0.00 | 29.20±34.18 | 94.40±8.26 |
8 | 99.12±0.92 | 99.75±0.25 | 96.35±2.22 | 99.40±0.79 | 92.23±2.78 | 91.70±2.83 | 99.60±0.79 | 99.91±0.15 | 100.00±0.00 |
9 | 0.00±0.00 | 55.56±9.63 | 22.78±15.27 | 81.11±13.15 | 42.22±10.86 | 44.44±8.28 | 90.56±15.33 | 33.33±32.77 | 94.44±6.93 |
10 | 68.19±3.47 | 90.28±1.87 | 66.31±1.94 | 93.86±1.67 | 57.64±1.99 | 57.88±2.32 | 94.45±1.51 | 93.38±1.65 | 94.05±1.45 |
11 | 86.01±1.97 | 96.43±1.25 | 71.22±1.97 | 95.55±0.80 | 71.65±1.59 | 71.32±2.28 | 96.17±1.80 | 97.06±0.90 | 97.18±1.09 |
12 | 78.67±3.38 | 89.65±3.53 | 42.94±1.92 | 84.89±3.37 | 43.21±3.38 | 43.00±4.80 | 89.14±4.20 | 95.43±1.94 | 91.14±1.90 |
13 | 95.11±3.10 | 98.61±1.16 | 92.66±2.99 | 99.29±1.06 | 94.84±2.18 | 94.51±1.84 | 98.70±1.44 | 98.10±1.40 | 97.61±1.80 |
14 | 96.92±0.75 | 99.16±0.33 | 90.44±1.65 | 99.02±0.44 | 94.46±1.04 | 93.99±0.91 | 99.89±0.08 | 99.22±0.69 | 99.79±0.33 |
15 | 56.71±4.70 | 96.41±2.50 | 34.38±3.26 | 78.65±5.07 | 37.61±3.30 | 37.38±3.25 | 93.92±2.04 | 94.09±3.67 | 92.62±2.60 |
16 | 85.71±5.50 | 85.41±6.16 | 88.57±2.98 | 98.21±2.53 | 87.11±5.24 | 88.43±5.63 | 96.51±2.44 | 92.74±9.40 | 98.43±1.28 |
OA | 81.35±0.71 | 94.41±0.50 | 68.90±0.67 | 92.69±0.45 | 67.40±0.65 | 67.43±0.69 | 95.19±0.46 | 96.20±0.46 | 96.29±0.30 |
AA | 66.77±1.33 | 87.80±3.19 | 64.94±1.60 | 91.22±1.43 | 67.43±1.12 | 67.73±1.31 | 95.71±0.88 | 87.63±2.74 | 96.29±1.84 |
κ×100 | 78.58±0.81 | 93.63±0.57 | 64.48±0.76 | 91.65±0.52 | 62.62±0.73 | 62.66±0.78 | 94.52±0.52 | 95.67±0.52 | 95.77±0.66 |
Time/s | 32 | 32 | 27 | 65 | 143 | 164 | 235 | 175 | 195 |
Tab.6
Classification accuracy of different methods for the Pavia University data set (2% for training)(%)"
Class | SVM | SVMCK | SR | JSR | LRR | LRSR | JLRSR | FRPLRaS | LRSR-ANR |
---|---|---|---|---|---|---|---|---|---|
1 | 90.97±2.60 | 95.87±0.60 | 83.70±5.00 | 88.03±4.94 | 62.32±1.29 | 59.63±3.62 | 91.63±2.69 | 96.07±0.55 | 97.14±1.03 |
2 | 97.18±0.79 | 99.32±0.41 | 89.17±1.66 | 97.82±1.09 | 83.11±1.88 | 81.51±1.10 | 99.35±0.54 | 97.73±0.57 | 99.84±0.15 |
3 | 69.65±5.27 | 96.12±2.39 | 50.28±9.24 | 69.23±13.53 | 58.70±4.58 | 59.45±3.54 | 87.21±4.35 | 79.37±4.23 | 96.22±2.07 |
4 | 88.91±3.25 | 99.36±0.16 | 82.42±1.62 | 87.28±1.61 | 89.59±0.78 | 88.67±1.77 | 89.83±3.46 | 93.41±2.76 | 93.20±2.86 |
5 | 98.36±0.76 | 73.76±9.21 | 94.23±3.49 | 100.00±0.00 | 99.36±0.09 | 99.35±0.04 | 99.67±0.76 | 99.34±0.92 | 99.92±0.04 |
6 | 81.88±2.87 | 95.81±1.25 | 47.33±4.89 | 75.12±7.36 | 43.20±2.48 | 43.04±1.72 | 85.77±3.61 | 88.18±1.95 | 93.42±4.16 |
7 | 72.59±9.26 | 96.66±1.16 | 30.42±7.14 | 46.83±16.28 | 59.69±4.52 | 58.79±5.57 | 95.33±3.62 | 94.32±1.52 | 98.97±1.01 |
8 | 88.65±2.39 | 97.84±0.90 | 24.63±3.27 | 56.70±13.16 | 58.24±1.61 | 57.07±1.96 | 90.64±3.84 | 92.33±2.46 | 96.40±1.32 |
9 | 99.52±0.34 | 80.02±13.59 | 73.02±3.64 | 81.76±3.19 | 84.98±0.93 | 82.46±1.45 | 86.25±0.93 | 99.89±0.16 | 88.45±2.06 |
OA | 91.06±0.48 | 96.78±0.52 | 73.43±0.88 | 86.07±2.08 | 72.15±0.80 | 70.80±1.08 | 94.13±0.76 | 94.67±0.49 | 97.52±0.46 |
AA | 87.52±1.41 | 92.75±1.97 | 63.91±1.71 | 78.09±3.88 | 71.02±0.70 | 70.00±1.18 | 91.74±1.17 | 93.41±0.77 | 95.88±0.67 |
κ×100 | 88.06±0.64 | 95.73±0.69 | 64.26±1.14 | 81.27±2.82 | 63.48±0.88 | 61.86±1.32 | 92.15±1.02 | 92.91±0.67 | 96.53±0.79 |
Time/s | 100 | 104 | 125 | 455 | 409 | 468 | 977 | 347 | 726 |
Tab.7
Classification accuracy of different methods for the Salinas data set (2% for training)(%)"
Class | SVM | SVMCK | SR | JSR | LRR | LRSR | JLRSR | FRPLRaS | LRSR-ANR |
---|---|---|---|---|---|---|---|---|---|
1 | 98.20± 0.91 | 99.08± 0.34 | 98.99± 0.36 | 99.99± 0.01 | 98.41± 0.38 | 97.48± 0.73 | 99.71±0.16 | 99.67±0.12 | 100.00± 0.00 |
2 | 99.46± 0.23 | 98.67± 0.52 | 98.19± 0.52 | 99.98± 0.02 | 97.23± 0.61 | 97.50± 0.57 | 99.95±0.06 | 99.27±0.22 | 99.95± 0.15 |
3 | 96.00± 2.95 | 98.78± 0.69 | 76.90± 3.31 | 96.59± 0.93 | 67.01± 3.88 | 67.92± 1.70 | 96.23±2.62 | 99.83±0.39 | 99.10± 2.09 |
4 | 98.37± 1.17 | 98.27± 1.94 | 92.88± 2.18 | 99.68± 0.23 | 98.55± 0.28 | 99.36± 0.06 | 72.03±4.88 | 99.37±0.81 | 81.23± 4.29 |
5 | 98.01± 0.52 | 97.80± 0.50 | 95.98± 0.87 | 95.01± 0.69 | 96.52± 1.22 | 97.67± 0.51 | 94.24±1.87 | 99.29±0.21 | 96.52± 1.04 |
6 | 99.52± 0.37 | 98.46± 1.56 | 98.80± 0.43 | 100.00± 0.00 | 99.44± 0.11 | 99.50± 0.07 | 96.4±0.76 | 99.82±0.13 | 99.93± 0.05 |
7 | 99.55± 0.25 | 98.97± 0.39 | 97.73± 0.52 | 100.00± 0.00 | 97.96± 0.28 | 97.42± 0.67 | 97.88±0.86 | 99.34±0.32 | 99.77± 0.11 |
8 | 88.87± 1.18 | 95.87± 0.74 | 84.88± 1.61 | 98.20± 0.50 | 64.12± 3.25 | 64.87± 2.29 | 94.55±1.96 | 91.01±0.70 | 98.22± 0.41 |
9 | 99.43± 0.38 | 99.22± 0.36 | 98.45± 0.51 | 99.99± 0.01 | 96.82± 0.23 | 97.05± 0.23 | 100.0±0.00 | 99.64±0.31 | 99.95± 0.03 |
10 | 90.65± 2.36 | 94.86± 2.76 | 91.31± 1.00 | 98.26± 0.53 | 76.21± 1.46 | 71.90± 1.19 | 92.91±1.50 | 95.52±1.03 | 97.69± 0.98 |
11 | 93.67± 2.78 | 94.59± 4.41 | 91.88± 4.39 | 99.87± 0.19 | 93.59± 1.11 | 93.71± 0.33 | 93.41±2.09 | 95.46±2.68 | 96.31± 1.78 |
12 | 99.52± 0.43 | 99.84± 0.09 | 83.04± 5.93 | 89.43± 7.05 | 91.06± 1.83 | 86.57± 3.90 | 88.87±2.58 | 99.57±0.28 | 92.86± 1.60 |
13 | 97.51± 1.96 | 94.44± 5.14 | 80.62± 5.11 | 87.82± 4.24 | 97.88± 0.26 | 97.41± 0.84 | 88.72±5.19 | 97.94±1.42 | 97.16± 1.79 |
14 | 90.94± 6.61 | 90.13± 4.30 | 83.34± 2.41 | 92.62± 3.53 | 87.14± 1.21 | 87.00± 0.97 | 85.22±6.30 | 93.33±4.38 | 92.66± 4.10 |
15 | 63.79± 3.29 | 91.51± 1.78 | 37.89± 3.76 | 56.07± 6.47 | 53.86± 4.33 | 53.08± 1.05 | 87.87±3.25 | 76.33±1.83 | 97.34± 0.97 |
16 | 96.05± 1.44 | 97.17± 2.22 | 94.85± 1.03 | 99.73± 0.27 | 88.71± 4.74 | 89.01± 3.28 | 99.01±1.69 | 97.47±0.69 | 99.21± 0.88 |
OA | 91.24± 0.50 | 96.61± 0.35 | 84.59± 0.30 | 92.50± 0.86 | 81.58± 0.21 | 81.30± 0.48 | 94.21±0.54 | 94.10±0.28 | 97.91± 0.13 |
AA | 94.35± 0.66 | 96.43± 0.70 | 87.86± 0.52 | 94.58± 0.53 | 87.78± 0.49 | 87.34± 0.32 | 92.94±0.45 | 96.43±0.29 | 96.74± 0.37 |
κ× 100 | 90.22± 0.56 | 96.22± 0.39 | 82.77± 0.33 | 91.61± 0.97 | 79.52± 0.24 | 79.21± 0.53 | 93.55±0.61 | 93.43±0.32 | 97.63± 0.21 |
Time/s | 277 | 280 | 262 | 1274 | 768 | 889 | 2217 | 580 | 1690 |
Tab.8
Statistical test between methods in terms of κ z-score and OA z-score"
Between-method | Indian Pines | Pavia University | Salinas | |||||
---|---|---|---|---|---|---|---|---|
κ(z-score) | OA (z-score) | κ (z-score) | OA (z-score) | κ (z-score) | OA (z-score) | |||
SVM/LRSR-ANR | 16.45 | 19.38 | 11.3 | 9.72 | 12.39 | 12.91 | ||
SVMCK/ LRSR-ANR | 2.45 | 3.22 | 0.76 | 1.06 | 3.18 | 3.48 | ||
SR/ LRSR-ANR | 31.06 | 37.31 | 26.78 | 24.26 | 37.99 | 40.73 | ||
JSR/ LRSR-ANR | 4.91 | 6.65 | 5.36 | 5.37 | 6.06 | 6.22 | ||
LRR/ LRSR-ANR | 33.68 | 40.35 | 34.33 | 27.49 | 56.78 | 66.12 | ||
LRSR/ LRSR-ANR | 32.4 | 38.35 | 25.18 | 22.76 | 32.31 | 33.4 | ||
JLRSR/LRSR-ANR | 1.48 | 2.01 | 3.39 | 3.81 | 6.32 | 6.66 | ||
FRPLRaS /LRSR-ANR | 0.12 | 0.16 | 3.50 | 4.24 | 10.97 | 12.34 |
Tab.10
A comparison of different variants of LRSR model in terms of classification accuracy(%)"
Data Sets | Metrics | LRSR | LRSR-no-adaptive | LRSR-ANR-Euc | LRSR-ANR-Cos | LRSR-ANR (Ours) |
---|---|---|---|---|---|---|
Indian Pines | OA | 67.43± 0.69 | 94.13±0.41 | 95.56± 0.41 | 95.87± 0.29 | 96.29 ± 0.30 |
AA | 67.73± 1.31 | 92.66± 1.36 | 94.93± 0.50 | 95.41± 0.49 | 96.29 ± 1.84 | |
κ× 100 | 62.66± 0.78 | 93.31± 0.47 | 95.59± 0.72 | 95.65± 0.33 | 95.77 ± 0.66 | |
Pavia University | OA | 70.80 ± 1.08 | 92.01 ± 0.64 | 96.30± 0.66 | 96.57± 0.66 | 97.52 ± 0.46 |
AA | 70.00 ± 1.18 | 84.95 ± 0.82 | 95.23± 0.99 | 95.48± 0.94 | 95.88 ± 0.67 | |
κ× 100 | 61.86 ± 1.32 | 89.39 ±0.87 | 94.42± 0.52 | 94.61± 0.54 | 96.53 ± 0.79 | |
Salinas | OA | 81.30 ± 0.48 | 96.74 ± 0.16 | 97.04± 0.15 | 96.97± 0.24 | 97.91 ± 0.13 |
AA | 87.34 ± 0.32 | 94.47 ± 0.39 | 96.43± 0.24 | 96.47± 0.28 | 96.74 ± 0.37 | |
κ× 100 | 79.21 ± 0.53 | 96.44 ± 0.17 | 96.19± 0.20 | 96.12± 0.33 | 97.63 ± 0.21 |
Tab.11
Classification accuracy of different methods(%)"
Data Sets | Metrics | 2D-CNN | 3D-CNN | SSUN | SSRN | LRSR-ANR |
---|---|---|---|---|---|---|
Indian Pines | OA | 92.38±1.05 | 94.53±0.64 | 94.93±1.14 | 97.50±0.35 | 96.29 ± 0.30 |
AA | 90.25±1.83 | 92.12±2.38 | 93.85±2.18 | 96.43±1.41 | 96.29 ± 1.84 | |
κ× 100 | 91.31±1.19 | 93.76±0.73 | 94.23±1.30 | 97.15±0.40 | 95.77 ± 0.66 | |
Pavia University | OA | 93.93±0.61 | 96.22±0.76 | 97.28±0.50 | 96.76±1.09 | 97.52 ± 0.46 |
AA | 91.77±0.84 | 94.33±1.05 | 95.43±1.01 | 96.47±0.89 | 95.88 ± 0.67 | |
κ× 100 | 91.93±0.80 | 94.18±1.00 | 96.39±0.66 | 95.69±1.48 | 96.53 ± 0.79 | |
Salinas | OA | 91.91±0.61 | 94.98±0.70 | 97.69±0.24 | 97.33±0.47 | 97.91 ± 0.13 |
AA | 93.54±0.48 | 96.22±1.45 | 98.62±0.16 | 98.61±0.32 | 96.74 ± 0.37 | |
κ× 100 | 91.01±0.67 | 94.41±0.77 | 97.42±0.26 | 97.02±0.52 | 97.63 ± 0.21 |
[1] |
GU Yanfeng, CHANUSSOT J, JIA Xiuping, et al. Multiple kernel learning for hyperspectral image classification: a review[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6547-6565.
doi: 10.1109/TGRS.2017.2729882 |
[2] |
GHAMISI P, YOKOYA N, LI Jun, et al. Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 37-78.
doi: 10.1109/MGRS.2017.2762087 |
[3] |
HE Lin, LI Jun, LIU Chenying, et al. Recent advances on spectral-spatial hyperspectral image classification: an overview and new guidelines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1579-1597.
doi: 10.1109/TGRS.2017.2765364 |
[4] | GHAMISI P, MAGGIORI E, LI Shutao, et al. New frontiers in spectral-spatial hyperspectral image classification: the latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(3): 10-43. |
[5] |
CHEN Yushi, JIANG Hanlu, LI Chunyang, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251.
doi: 10.1109/TGRS.2016.2584107 |
[6] | XU Yonghao, ZHANG Liangpei, DU Bo, et al. Spectral-spatial unified networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5893-5909. |
[7] |
ZHONG Zilong, LI Jonathan, LUO Zhiming, et al. Spectral-spatial residual network for hyperspectral image classification: a 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847-858.
doi: 10.1109/TGRS.2017.2755542 |
[8] |
SONG Weiwei, LI Shutao, FANG Leyuan, et al. Hyperspectral image classification with deep feature fusion network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3173-3184.
doi: 10.1109/TGRS.2018.2794326 |
[9] | XU Kejie, HUANG Hong, DENG Peifang, et al. Deep feature aggregation framework driven by graph convolutional network for scene classification in remote sensing[J]. IEEE Transactions on Neural Networks and Learning Systems, 202151(4): 1-15. |
[10] |
XUE Zhaohui, ZHANG Mengxue, LIU Yifeng, et al. Attention-based second-order pooling network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9600-9615.
doi: 10.1109/TGRS.2020.3048128 |
[11] |
ZHU Minghao, JIAO Licheng, LIU Fang, et al. Residual spectral-spatial attention network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 449-462.
doi: 10.1109/TGRS.36 |
[12] |
LI Wei, DU Qian. A survey on representation-based classification and detection in hyperspectral remote sensing imagery[J]. Pattern Recognition Letters, 2016, 83(11): 115-123.
doi: 10.1016/j.patrec.2015.09.010 |
[13] |
WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
doi: 10.1109/TPAMI.2008.79 |
[14] | ZHANG Lei, YANG Meng, FENG Xiangchu. Sparse representation or collaborative representation: which helps face recognition?[C]// Proceedings of 2011 International Conference on Computer Vision (ICCV). Barcelona: IEEE, 2011: 471-478. |
[15] |
LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
pmid: 22487984 |
[16] |
CHEN Y, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.
doi: 10.1109/TGRS.2011.2129595 |
[17] |
XUE Zhaohui, LI Jun, CHENG Liang, et al. Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 70-84.
doi: 10.1109/TGRS.2014.2318332 |
[18] |
XU Xiang, LI Jun, HUANG Xin, et al. Multiple morphological component analysis based decomposition for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 3083-3102.
doi: 10.1109/TGRS.2015.2511197 |
[19] |
DU Peijun, XUE Zhaohui, LI Jun, et al. Learning discriminative sparse representations for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(6): 1089-1104.
doi: 10.1109/JSTSP.4200690 |
[20] |
XUE Zhaohui, DU Peijun, LI Jun, et al. Simultaneous sparse graph embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 6114-6133.
doi: 10.1109/TGRS.36 |
[21] |
DUAN Yule, HUANG Hong, WANG Tao. Semisupervised feature extraction of hyperspectral image using nonlinear geodesic sparse hypergraphs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 51(4): 1-5.
doi: 10.1109/TGRS.2012.2233231 |
[22] |
LIU Jianjun, WU Zebin, SUN Le, et al. Hyperspectral image classification using kernel sparse representation and semilocal spatial graph regularization[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(8): 1320-1324.
doi: 10.1109/LGRS.2013.2292831 |
[23] |
XUE Zhaohui, DU Peijun, LI Jun, et al. Sparse graph regularization for hyperspectral remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(4): 2351-2366.
doi: 10.1109/TGRS.2016.2641985 |
[24] |
XUE Zhaohui, DU Peijun, SU Hongjun, et al. Discriminative sparse representation for hyperspectral image classification: a semi-supervised perspective[J]. Remote Sensing, 2017, 9(4): 386.
doi: 10.3390/rs9040386 |
[25] |
SUN Xiaoxia, QU Qing, NASRABADI N M, et al. Structured priors for sparse-representation-based hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1235-1239.
doi: 10.1109/LGRS.2013.2290531 |
[26] |
TU Bing, HUANG Siyuan, FANG Leyuan, et al. Hyperspectral image classification via weighted joint nearest neighbor and sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4063-4075.
doi: 10.1109/JSTARS.4609443 |
[27] |
PENG Jiangtao, SUN Weiwei, DU Qian. Self-paced joint sparse representation for the classification of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1183-1194.
doi: 10.1109/TGRS.2018.2865102 |
[28] |
LI Dan, KONG Fanqiang, WANG Qiang. Hyperspectral image classification via nonlocal joint kernel sparse representation based on local covariance[J]. Signal Processing, 2021, 180: 107865.
doi: 10.1016/j.sigpro.2020.107865 |
[29] |
PENG Jiangtao, LI Luoqing, TANG Yuanyan. Maximum likelihood estimation-based joint sparse representation for the classification of hyperspectral remote sensing images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(6): 1790-1802.
doi: 10.1109/TNNLS.2018.2874432 pmid: 30371395 |
[30] |
YANG Weidong, PENG Jiangtao, SUN Weiwei, et al. Log-euclidean kernel-based joint sparse representation for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5023-5034.
doi: 10.1109/JSTARS.2019.2952408 |
[31] |
WANG Mingwei, JIA Zitong, LUO Jianwei, et al. A Hyperspectral image classification method based on weight wavelet kernel joint sparse representation ensemble and β-whale optimization algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2535-2550.
doi: 10.1109/JSTARS.4609443 |
[32] |
LIANG Miaomiao, JIAO Licheng, XU Chundong. Deep feature-based multitask joint sparse representation for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1578-1582.
doi: 10.1109/LGRS.8859 |
[33] |
ZHANG Chengkun, HAN Min. Multi-feature hyperspectral image classification with L2,1 norm constrained joint sparse representation[J]. International Journal of Remote Sensing, 2021, 42(12): 4785-4804.
doi: 10.1080/01431161.2021.1890854 |
[34] |
DUAN Yule, HUANG Hong, LI Zhengying, et al. Local manifold-based sparse discriminant learning for feature extraction of hyperspectral image[J]. IEEE Transactions on Cybernetics, 2021, 51(8): 4021-4034.
doi: 10.1109/TCYB.2020.2977461 |
[35] |
DUAN Yule, HUANG Hong, TANG Yuxiao. Local constraint-based sparse manifold hypergraph learning for dimensionality reduction of hyperspectral image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 613-628.
doi: 10.1109/TGRS.36 |
[36] |
GU Yanfeng, WANG Qianwang, WANG Hong, et al. Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 2739-2751.
doi: 10.1109/JSTARS.4609443 |
[37] |
AN Jinliang, ZHANG Xiangrong, ZHOU Huiyu, et al. Tensor-based low-rank graph with multimanifold regularization for dimensionality reduction of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4731-4746.
doi: 10.1109/TGRS.2018.2835514 |
[38] |
SUN Weiwei, DU Qian. Graph-regularized fast and robust principal component analysis for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3185-3195.
doi: 10.1109/TGRS.2018.2794443 |
[39] |
ZHAI Han, ZHANG Hongyan, ZHANG Liangpei, et al. Laplacian-regularized low-rank subspace clustering for hyperspectral image band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1723-1740.
doi: 10.1109/TGRS.2018.2868796 |
[40] |
REN Shougang, WAN Sheng, GU Xingjian, et al. Semi-Supervised hyperspectral image classification using local low-rank representation[J]. Remote Sensing Letters, 2019, 10(2): 195-204.
doi: 10.1080/2150704X.2018.1538581 |
[41] |
FENG Zhixi, YANG Shuyuan, WANG Min, et al. Learning dual geometric low-rank structure for semisupervised hyperspectral image classification[J]. IEEE Transactions on Cybernetics, 2021, 51(1): 346-358.
doi: 10.1109/TCYB.6221036 |
[42] |
LIU Qian, WU Zebin, SUN Le, et al. Kernel low-rank representation based on local similarity for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1920-1932.
doi: 10.1109/JSTARS.2019.2915842 |
[43] |
ZHAN Tianming, LU Zhenyu, WAN Minghua, et al. Multiscale superpixel kernel-based low-rank representation for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1642-1646.
doi: 10.1109/LGRS.8859 |
[44] |
SU Hongjun, YAO Wenjing, WU Zhaoyue, et al. Kernel low-rank representation with elastic net for China coastal wetland land cover classification using GF-5 hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 238-252.
doi: 10.1016/j.isprsjprs.2020.11.018 |
[45] | WANG Yuebin, MEI Jie, ZHANG Liqiang, et al. Self-supervised low-rank representation (SSLRR) for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5658-5672. |
[46] |
WANG Qi, HE Xiang, LI Xuelong. Locality and structure regularized low rank representation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 911-923.
doi: 10.1109/TGRS.2018.2862899 |
[47] |
MEI Shaohui, BI Qianqian, JI Jingyu, et al. Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2910-2921.
doi: 10.1109/JSTARS.4609443 |
[48] |
MEI Shaohui, HOU Junhui, CHEN Jie, et al. Simultaneous spatial and spectral low-rank representation of hyperspectral images for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2872-2886.
doi: 10.1109/TGRS.2017.2785359 |
[49] | ZHANG Mengmeng, LI Wei, DU Qian. Joint low rank and sparse representation-based hyperspectral image classification[C]// Proceedings of 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). Los Angeles, CA: IEEE, 2016: 1-4. |
[50] |
PAN Lei, LI Hengchao, MENG Hua, et al. Hyperspectral image classification via low-rank and sparse representation with spectral consistency constraint[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2117-2121.
doi: 10.1109/LGRS.2017.2753401 |
[51] | CHEN Jie, CAO Hongju, CHEN Shuhan, et al. A fast low rank approximation and sparsity representation approach to hyperspectral anomaly detection[C]// Proceedings of 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa, HI: IEEE, 2020: 2432-2435. |
[52] |
DE MORSIER F, BORGEAUD M, GASS V, et al. Kernel low-rank and sparse graph for unsupervised and semi-supervised classification of hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3410-3420.
doi: 10.1109/TGRS.2016.2517242 |
[53] |
LI Wei, LIU Jiabin, DU Qian. Sparse and low-rank graph for discriminant analysis of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4094-4105.
doi: 10.1109/TGRS.2016.2536685 |
[54] |
PAN Lei, LI Hengchao, DENG Yangjun, et al. Hyperspectral dimensionality reduction by tensor sparse and low-rank graph-based discriminant analysis[J]. Remote Sensing, 2017, 9(5): 452.
doi: 10.3390/rs9050452 |
[55] |
PAN Lei, LI Hengchao, LI Wei, et al. Discriminant analysis of hyperspectral imagery using fast kernel sparse and low-rank graph[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6085-6098.
doi: 10.1109/TGRS.2017.2720584 |
[56] |
SUN Weiwei, YANG Gang, DU Bo, et al. A sparse and low-rank near-isometric linear embedding method for feature extraction in hyperspectral imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 4032-4046.
doi: 10.1109/TGRS.2017.2686842 |
[57] |
SUN Weiwei, PENG Jiangtao, YANG Gang, et al. Fast and latent low-rank subspace clustering for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3906-3915.
doi: 10.1109/TGRS.36 |
[58] |
RASTI B, GHAMISI P, PLAZA J, et al. Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6354-6365.
doi: 10.1109/TGRS.2017.2726901 |
[59] |
GAO Lianru, HONG Danfeng, YAO Jing, et al. Spectral superresolution of multispectral imagery with joint sparse and low-rank learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2269-2280.
doi: 10.1109/TGRS.36 |
[60] | BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1-122. |
[61] | LEE J, CHOE Y. Low rank matrix recovery via angmented lagrange mutiplier with nonconvex minimization[C]// Proceedings of 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). France: IEEE, 2016. |
[62] | LIN Zhouchen, LIU Risheng, SU Zhixun. Linearized alternating direction method with adaptive penalty for low-rank representation[C]// Proceedings of 24th International Conference on Neural Information Processing Systems. Granada, Spain: Curran Associates Inc., 2011: 612-620. |
[63] |
LU Canyi, FENG Jiashi, YAN Shuicheng, et al. A unified alternating direction method of multipliers by majorization minimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 527-541.
doi: 10.1109/TPAMI.2017.2689021 pmid: 28368818 |
[64] | CANDÈS E J, LI Xiaodong, MA Yi, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 1-31. |
[65] |
MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8): 1778-1790.
doi: 10.1109/TGRS.2004.831865 |
[66] |
CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J, et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 93-97.
doi: 10.1109/LGRS.2005.857031 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||