[1] |
GUAN Zelin, GUAN Zheng, HUANG Motao, et al.Theory and method of regional gravity field approximation[M]. Beijing: Surveying and Mapping Press, 1997.
|
[2] |
MARTINEC Z.Boundary-value problems for gravimetric determination of a precise geoid[M]. Berlin: Springer, 1998.
|
[3] |
LI Jiancheng.The recent Chinese terrestrial digital height datum model: gravimetric quasi-geoid CNGG2011[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 651-660, 669.
|
[4] |
RONG Min.Stokes-Helmert method for geoid determination[D]. Zhengzhou: Information Engineering University, 2015.
|
[5] |
MA Jian.Theory and methods of the Hotine-Helmert boundary value problem for the determination of the quasi-geoid[D]. Zhengzhou: Information Engineering University, 2018.
|
[6] |
DENG Biao, HONG Shaoming, SONG Lei.Refining of centimeter-precise local quasi-geoid[J]. Journal of Geodesy and Geodynamics, 2009, 29(3): 125-127.
|
[7] |
RONG Min, ZHOU Wei, REN Hongfei.Meissel-Stokes function used in the regional geoid determination[J]. Engineering of Surveying and Mapping, 2015, 24(9): 5-10.
|
[8] |
SJÖBERG L E, HUNEGNAW A. Some modifications of Stokes’ formula that account for truncation and potential coefficient errors[J]. Journal of Geodesy, 2000, 74(2): 232-238.
|
[9] |
WONG L, GORE R.Accuracy of geoid heights from modified Stokes kernels[J]. Geophysical Journal International, 1969, 18(1): 81-91.
|
[10] |
FEATHERSTONE W E, EVANS J D, OLLIVER J G.A Meissl-modified Vaní$\check{c}$ek and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations[J]. Journal of Geodesy, 1998, 72(3): 154-160.
|
[11] |
FEATHERSTONE W E.Band-limited kernel modifications for regional geoid determination based on dedicated satellite gravity field missions[M]∥TZIAVOS I N. Gravity and Geoid. Thessaloniki: [s.n.], 2003: 341-346.
|
[12] |
WANG Wei, LI Shanshan, MA Biao, et al.A method for establishing mean free-air gravity anomaly based on isostatic theory[J]. Journal of Geodesy and Geodynamics, 2013, 33(4): 146-150.
|
[13] |
MA Jian, WEI Ziqing, WU Lili, et al.The Bouguer correction algorithm for gravity with limited range[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 26-33. DOI: 10.11947/j.AGCS.2017.20160173.
|
[14] |
SUN Wen, WU Xiaoping, WANG Qingbin, et al.Comparison and analysis of high-precision gravity data gridding methods[J]. Journal of Geodesy and Geodynamics, 2015, 35(2): 342-345.
|
[15] |
LI Shanshan, QU Zhenghao.Effect of error of gravity data on geoid determination[J]. Journal of Geodesy and Geodynamics, 2016, 36(10): 847-850, 869.
|
[16] |
VANÍ.$\check{c}$EK P, KLEUSBERG A. The Canadian geoid-Stokesian approach[J]. Manuscripta Geodaetica, 1987, 12(2): 86-98.
|
[17] |
FEATHERSTONE W E, KIRBY J F, KEARSLEY A H W, et al. The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data[J]. Journal of Geodesy, 2001, 75(5-6): 313-330.
|
[18] |
VANÍ$\check{c}$EK P, FEATHERSTONE W E. Performance of three types of Stokes’s kernel in the combined solution for the geoid[J]. Journal of Geodesy, 1998, 72(12): 684-697.
|
[19] |
LI Jiancheng, CHAO Dingbo.Derivation of Hotine function using Poisson integral and application of Hotine formula[J]. Geomatics and Information Science of Wuhan University, 2003, 28(S1): 55-57.
|
[20] |
FEATHERSTONE W E.Deterministic, Stochastic, hybrid and band-limited modifications of Hotine’s integral[J]. Journal of Geodesy, 2013, 87(5): 487-500.
|
[21] |
CHENG Luying.General kernel functions based on integral transformation among different disturbing potential elements[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(2): 203-210.
|
[22] |
HUANG J L, VÉRONNEAU M. Canadian gravimetric geoid model 2010[J]. Journal of Geodesy, 2013, 87(8): 771-790.
|
[23] |
LIU Min, HUANG Motao, OUYANG Yongzhong, et al.Test and analysis of downward continuation models for airborne gravity data with regard to the effect of topographic height[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 521-530. DOI: 10.11947/j.AGCS.2016.20150453.
|
[24] |
ZHAI Zhenhe, WANG Xingtao, LI Yingchun.Solution and comparison of high order term of analytical continuation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 134-138.
|
[25] |
WEI Ziqing.High-order radial derivatives of harmonic function and gravity anomaly[J]. Journal of Physical Science and Application, 2014, 4(7): 454-467.
|
[26] |
MA Jian, WEI Ziqing, REN Hongfei, et al.Practical algorithm of the downward continuation considering the far-zone effect[J]. Progress in Geophysics, 2018, 33(2): 498-502.
|
[27] |
MA Jian, WEI Ziqing, REN Hongfei.Hotine-Helmert boundary-value calculation model for quasi-geoid determination[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 153-160. DOI: 10.11947/j.AGCS.2019.20170594.
|
[28] |
MA Jian, WEI Ziqing.Prism algorithms for the near-zone direct and indirect topographic effects[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1429-1436. DOI: 10.11947/j.AGCS.2018.20170369.
|
[29] |
LI Jiancheng.Study and progress in theories and crucial techniques of modern height measurement in China[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 980-987.
|