Journal of Geodesy and Geoinformation Science ›› 2020, Vol. 3 ›› Issue (2): 1-15.doi: 10.11947/j.JGGS.2020.0201
Fulong XU1,Zishen LI3(),Kefei ZHANG1,2(),Ningbo WANG3,Suqin WU2,Andong HU4,Lucas Holden2
Received:
2020-01-14
Accepted:
2020-04-14
Online:
2020-06-20
Published:
2020-07-07
Contact:
Zishen LI,Kefei ZHANG
E-mail:lizishen@aircas.ac.cn(Z.L.);Kefei.zhang@rmit.edu.au(K.Z)
About author:
Fulong XU(1995—), male, master degree candidate, majors in high latitude ionospheric scintillation based on deep learning.E mail: fulong_xu@cumt.edu.cn
Supported by:
Fulong XU,Zishen LI,Kefei ZHANG,Ningbo WANG,Suqin WU,Andong HU,Lucas Holden. An Investigation of Optimal Machine Learning Methods for the Prediction of ROTI[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 1-15.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.1
The comparison of characteristics of seven methods"
Characteristic indices | ANN | RNN | LSTM | GRU | BRNN | BLSTM | BGRU |
---|---|---|---|---|---|---|---|
Long-term memory | No | No | Yes | Yes | No | Yes | Yes |
Direction of recurrent layer | No | Unidirectional | Unidirectional | Unidirectional | Bidirectional | Bidirectional | Bidirectional |
Connection between the hidden layer and output layer | All neurons | The last time step | The last time step | The last time step | All time- steps | All time- steps | All time- steps |
Number of gate structures | 0 | 0 | 3 | 2 | 0 | 3 | 2 |
Tab.2
The RMSE of different methods when the test set, validation set, and training set contains data for the 250th day, respectivelyTECU/min"
The set which contains data for 250th day | Methods | RMSE of training set | RMSE of validation set | RMSE of test set | |||||
---|---|---|---|---|---|---|---|---|---|
Test set | ANN | 0.0476 | 0.0606 | 0.0643 | |||||
RNN | 0.0482 | 0.0566 | 0.0569 | ||||||
LSTM | 0.0471 | 0.0548 | 0.0506 | ||||||
GRU | 0.0472 | 0.0551 | 0.0493 | ||||||
BRNN | 0.0487 | 0.0569 | 0.0561 | ||||||
BLSM | 0.0468 | 0.0550 | 0.0506 | ||||||
BGRU | 0.0466 | 0.0539 | 0.0491 | ||||||
Validation set | ANN | 0.0442 | 0.0519 | 0.0940 | |||||
RNN | 0.0441 | 0.0520 | 0.0520 | ||||||
LSTM | 0.0440 | 0.0486 | 0.0498 | ||||||
GRU | 0.0440 | 0.0474 | 0.0490 | ||||||
BRNN | 0.0450 | 0.0530 | 0.0521 | ||||||
BLSM | 0.0447 | 0.0515 | 0.0496 | ||||||
BGRU | 0.0440 | 0.0474 | 0.0484 | ||||||
Training set | ANN | 0.0486 | 0.0766 | 0.0524 | |||||
RNN | 0.0486 | 0.0645 | 0.0436 | ||||||
LSTM | 0.0485 | 0.0629 | 0.0383 | ||||||
GRU | 0.0486 | 0.0618 | 0.0380 | ||||||
BRNN | 0.0503 | 0.0657 | 0.0420 | ||||||
BLSM | 0.0483 | 0.0627 | 0.0388 | ||||||
BGRU | 0.0483 | 0.0625 | 0.0379 |
Tab.3
RMSE of different methods in four seasons during the solar quiet period in 2017 TECU/min"
Seasons | Methods | RMSE of training set | RMSE of validation set | RMSE of test set |
---|---|---|---|---|
Spring | ANN | 0.0503 | 0.0446 | 0.0552 |
RNN | 0.0501 | 0.0442 | 0.0383 | |
LSTM | 0.0501 | 0.0413 | 0.0338 | |
GRU | 0.0492 | 0.0412 | 0.0329 | |
BRNN | 0.0493 | 0.0426 | 0.0357 | |
BLSM | 0.0491 | 0.0408 | 0.0325 | |
BGRU | 0.0490 | 0.0406 | 0.0322 | |
Summer | ANN | 0.0426 | 0.0570 | 0.0477 |
RNN | 0.0434 | 0.0539 | 0.0447 | |
LSTM | 0.0429 | 0.0514 | 0.0433 | |
GRU | 0.0427 | 0.0513 | 0.0433 | |
BRNN | 0.0428 | 0.0537 | 0.0449 | |
BLSM | 0.0424 | 0.0510 | 0.0432 | |
BGRU | 0.0432 | 0.0517 | 0.0432 | |
Autumn | ANN | 0.0455 | 0.0568 | 0.0499 |
RNN | 0.0466 | 0.0558 | 0.0479 | |
LSTM | 0.0446 | 0.0527 | 0.0466 | |
GRU | 0.0448 | 0.0524 | 0.0464 | |
BRNN | 0.0470 | 0.0590 | 0.0496 | |
BLSM | 0.0446 | 0.0525 | 0.0463 | |
BGRU | 0.0450 | 0.0522 | 0.0460 | |
Winter | ANN | 0.0574 | 0.0511 | 0.0497 |
RNN | 0.0568 | 0.0498 | 0.0485 | |
LSTM | 0.0565 | 0.0494 | 0.0463 | |
GRU | 0.0577 | 0.0489 | 0.0459 | |
BRNN | 0.0574 | 0.0511 | 0.0496 | |
BLSM | 0.0577 | 0.0497 | 0.0459 | |
BGRU | 0.0564 | 0.0485 | 0.0451 |
[1] |
LI Zishen, WANG Ningbo, WANG Liang, et al. Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP[J]. Journal of Geodesy, 2019,93(9):1659-1671.
doi: 10.1007/s00190-019-01275-5 |
[2] |
LI Wang, YUE Jianping, YANG Yang, et al. Ionospheric and thermospheric responses to the recent strong solar flares on 6 September 2017[J]. Journal of Geophysical Research: Space Physics, 2018,123(10):8865-8883.
doi: 10.1029/2018JA025700 |
[3] |
YEH K C, LIU C H. Radio wave scintillations in the ionosphere[J]. Proceedings of the IEEE, 1982,70(4):324-360.
doi: 10.1109/PROC.1982.12313 |
[4] |
DE OLIVEIRA MORAES A, COSTA E, DE PAULA E R, et al. Extended ionospheric amplitude scintillation model for GPS receivers[J]. Radio Science, 2014,49(5):315-329.
doi: 10.1002/2013RS005307 |
[5] |
JIAO Yu, MORTON Y T, TAYLOR S, et al. Characterization of high-latitude ionospheric scintillation of GPS signals[J]. Radio Science, 2013,48(6):698-708.
doi: 10.1002/2013RS005259 |
[6] |
MUSHINI S C, JAYACHANDRAN P T, LANGLEY R B, et al. Improved amplitude-and phase-scintillation indices derived from wavelet detrended high-latitude GPS data[J]. GPS Solutions, 2012,16(3):363-373.
doi: 10.1007/s10291-011-0238-4 |
[7] | BASU S, BASU S, VALLADARES C E, et al. Ionospheric effects of major magnetic storms during the international space weather period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes[J]. Journal of Geophysical Research: Space Physics, 2001,106(A12):30389-30413. |
[8] |
GROVES K M, BASU S, WEBER E J, et al. Equatorial scintillation and systems support[J]. Radio Science, 1997,32(5):2047-2064.
doi: 10.1029/97RS00836 |
[9] | HUANG C Y, BURKE W J, MACHUZAK J S, et al. Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: Toward a global climatology[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): SIA-7-1-SIA-7-10. |
[10] |
CHERNIAK I, ZAKHARENKOVA I. New advantages of the combined GPS and GLONASS observations for high-latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm[J]. Earth, Planets and Space, 2017,69(1):66.
doi: 10.1186/s40623-017-0652-0 |
[11] | AARONS J. Global positioning system phase fluctuations at auroral latitudes[J]. Journal of Geophysical Research: Space Physics, 1997,102(A8):17219-17231. |
[12] |
PRIKRYL P, GHODDOUSI-FARD R, SPOGLI L, et al. GPS phase scintillation at high latitudes during geomagnetic storms of 7-17 March 2012-Part 2: interhemispheric comparison[J]. Annales Geophysicae, 2015,33(6):657-670.
doi: 10.5194/angeo-33-657-2015 |
[13] | ALFONSI L, SPOGLI L, DE FRANCESCHI G, et al. Bipolar climatology of GPS ionospheric scintillation at solar minimum[J]. Radio Science, 2011, 46(3): RS0D05. |
[14] |
LI Guozhu, NING Baiqi, REN Zhipeng, et al. Statistics of GPS ionospheric scintillation and irregularities over polar regions at solar minimum[J]. GPS Solutions, 2010,14(4):331-341.
doi: 10.1007/s10291-009-0156-x |
[15] |
JACOBSEN K S, DÄHNN M. Statistics of ionospheric disturbances and their correlation with GNSS positioning errors at high latitudes[J]. Journal of Space Weather Space Climate, 2014,4(A8):A27.
doi: 10.1051/swsc/2014024 |
[16] |
SIERADZKI R, PAZIEWSKI J. GNSS-based analysis of high latitude ionospheric response on a sequence of geomagnetic storms performed with ROTI and a new relative STEC indicator[J]. Journal of Space Weather and Space Climate, 2019,9(4):A5.
doi: 10.1051/swsc/2019001 |
[17] |
PI X, MANNUCCI A J, LINDQWISTER U J, et al. Monitoring of global ionospheric irregularities using the worldwide GPS network[J]. Geophysical Research Letters, 1997,24(18):2283-2286.
doi: 10.1029/97GL02273 |
[18] |
BASU S, GROVES K M, QUINN J M, et al. A comparison of TEC fluctuations and scintillations at Ascension Island[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999,61(16):1219-1226.
doi: 10.1016/S1364-6826(99)00052-8 |
[19] | BEACH T L, KINTNER P M. Simultaneous global positioning system observations of equatorial scintillations and total electron content fluctuations[J]. Journal of Geophysical Research: Space Physics, 1999,104(A10):22553-22565. |
[20] |
CHERNIAK I, KRANKOWSKI A, ZAKHARENKOVA I. Observation of the ionospheric irregularities over the northern hemisphere: methodology and service[J]. Radio Science, 2014,49(8):653-662.
doi: 10.1002/2014RS005433 |
[21] |
CHERNIAK I, ZAKHARENKOVA I. High-latitude ionospheric irregularities: differences between ground-and space-based GPS measurements during the 2015 St. Patrick’s Day storm[J]. Earth, Planets and Space, 2016,68(1):136.
doi: 10.1186/s40623-016-0506-1 |
[22] |
SECAN J A, BUSSEY R M, FREMOUW E J, et al. High-latitude upgrade to the wideband ionospheric scintillation model[J]. Radio Science, 1997,32(4):1567-1574.
doi: 10.1029/97RS00453 |
[23] | MAURITS S A, GHERM V E, ZERNOV N N, et al. Modeling of scintillation effects on high-latitude transionospheric paths using ionospheric model ( UAF EPPIM)for background electron density specifications[J]. Radio Science, 2008, 43(4): RS4001. |
[24] | PRIKRYL P, JAYACHANDRAN P T, MUSHINI S C, et al. Toward the probabilistic forecasting of high-latitude GPS phase scintillation[J]. Space Weather, 2012,10(8):S08005. |
[25] |
CHARTIER A, FORTE B, DESHPANDE K, et al. Three-dimensional modeling of high-latitude scintillation observations[J]. Radio Science, 2016,51(7):1022-1029.
doi: 10.1002/rds.v51.7 |
[26] |
MCGRANAGHAN R M, MANNUCCI A J, WILSON B, et al. New capabilities for prediction of high-latitude ionospheric scintillation: a novel approach with machine learning[J]. Space Weather, 2018,16(11):1817-1846.
doi: 10.1029/2018SW002018 |
[27] |
HU Andong, ZHANG Kaifei. Using bidirectional long short-term memory method for the height of F2 peak forecasting from ionosonde measurements in the Australian region[J]. Remote Sensing, 2018,10(10):1658.
doi: 10.3390/rs10101658 |
[28] |
STANKOV S, KUTIEV I, JAKOWSKI N, et al. GPS TEC forecasting based on auto-correlation analysis[J]. Acta Geodaetica et Geophysica Hungarica, 2004,39(1):1-14.
doi: 10.1556/AGeod.39.2004.1.1 |
[29] |
NGWIRA C M, MCKINNELL L A CILLIERS P J. GPS phase scintillation observed over a high-latitude Antarctic station during solar minimum[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2010,72(9-10):718-725.
doi: 10.1016/j.jastp.2010.03.014 |
[30] | MAYAUD P N. Derivation, meaning, and use of geomagnetic indices[M]. Washington, DC: American Geophysical Union Geophysical Monograph Series, 1980: 22. |
[31] | MENVIELLE M, IYEMORI T, MARCHAUDON A, et al. Geomagnetic indices[M] //MANDEA M, KORTE M. Geomagnetic Observations and Models. Dordrecht: Springer, 2011: 183-228. |
[32] |
GILES C L, KUHN G M, WILLIAMS R J. Dynamic recurrent neural networks: theory and applications[J]. IEEE Transactions on Neural Networks, 1994,5(2):153-156.
doi: 10.1109/TNN.72 |
[33] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[34] | CHO K, VAN MERRIËNBOER B, GULCEHRE C , et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014: 1724-1734. |
[35] |
SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997,45(11):2673-2681.
doi: 10.1109/78.650093 |
[36] | JAYACHANDRAN P T, LANGLEY R B, MACDOUGALL J W, et al. Canadian high arctic ionospheric network (CHAIN)[J]. Radio Science, 2009, 44(1): RS0A03. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||