Journal of Geodesy and Geoinformation Science ›› 2020, Vol. 3 ›› Issue (2): 81-92.doi: 10.11947/j.JGGS.2020.0209
Previous Articles Next Articles
Dineng ZHAO,Ziyin WU(),Jieqiong ZHOU,Mingwei WANG,Zhihao LIU,Jiabiao LI
Received:
2019-07-25
Accepted:
2020-01-25
Online:
2020-06-20
Published:
2020-07-08
Contact:
Ziyin WU
E-mail:zywu@vip.163.com
About author:
Dineng ZHAO(1990—), male, PhD, assistant research fellow, majors in seabed topography detection.E-mail: zhaodineng@sio.org.cn
Supported by:
Dineng ZHAO,Ziyin WU,Jieqiong ZHOU,Mingwei WANG,Zhihao LIU,Jiabiao LI. Parameter Group Optimization by Combining CUBE with Surface Filtering and Its Application[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 81-92.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.2
Components of the MBES and their accuracy"
Instrument | Model | Accuracy |
---|---|---|
Multi-beam Sonar | Reson Seabat 7125 | Depth accuracy: 6mm |
Positioning | NavCom SF-3050 | <0.1m |
Heading | — | ±0.1° seclat RMS |
Heave | IXBlue Octans III | ±5cm or 5% RMS |
Roll, pitch | — | ±0.01° RMS |
Tide level | RBRduo T.D|tide | ±0.05% full scale |
Surface sound velocity | Reson SVP 70 | ±0.05m/s |
Sound velocity profile | RBR concerto C.T.D | ±0.2m/s |
Tab.3
Processing effect on the typical area using different parameter groups combining CUBE and surface filter"
No. | CUBE parameter groups | μfilter | S.A. (%) | G.A./m N.D. | |||||
---|---|---|---|---|---|---|---|---|---|
MACA | MACR | MRCA | MRCR | MACA+ MRCR | MRCA+ MRCR | ||||
1 | Default | 1.5×Std | 94.72 | 0.831 | 4.063 | 0.383 | 95.10 | 4.894 | 0.08 |
2 | Default | 2.5×Std | 95.37 | 0.182 | 4.071 | 0.375 | 95.75 | 4.253 | 0.06 |
3 | Default | 3.5×Std | 94.51 | 0.195 | 4.915 | 0.381 | 94.89 | 5.110 | 0.12 |
4 | Deep | 2.5×Std | 94.93 | 0.742 | 3.939 | 0.385 | 95.32 | 4.681 | 0.09 |
5 | Shallow | 2.5×Std | 95.85 | 0.114 | 3.537 | 0.502 | 96.35 | 3.651 | 0.03 |
6 | NOAA | 2.5×Std | 95.98 | 0.102 | 3.385 | 0.532 | 96.51 | 3.487 | 0.03 |
[1] | LI Jiabiao. Multibeam sounding principles, survey technologies and data processing methods[M]. Beijing: Ocean Press, 1999. |
[2] | ZHAO Jianhu. Modern marine surveying and charting[M]. Wuhan: Wuhan University Press, 2008. |
[3] | HUANG Chenhu, LU Xiuping, HUANG Motao, et al. Shallow water multibeam sounding tide correction technology [C]//Marine Surveying and Mapping Comprehensive Symposium. Jiujiang: Chinese Society of Geodesy, Photogrammetry and Cartography, 2007. |
[4] | YANG Fanlin, LI Jiabiao, WU Ziyin, et al. The methods of removing instantaneous attitude errors for multibeam bathymetry data[J]. Acta Geodaetica et Cartographica Sinica, 2009,38(5):450-456. DOI: 10.3321/j.issn:1001-1595.2009.05.012. |
[5] | ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. A method for streamlining and assessing sound velocity profiles based on improved D-P algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(7):681-689.DOI: 10.13485/j.cnki.11-2089.2014.0132. |
[6] | WU Ziyin, LI Jiabiao, YANG Fanlin, et al. An intergrated method for automatic identification of the foot point of slope[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(2):170-177.DOI: 10.13485/j.cnki.11-2089.2014.0025. |
[7] | ZHAO Jianhu, OUYANG Yongzhong, WANG Aixue. Status and development tendency for seafloor terrain measurement technology[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1786-1794.DOI: 10.11947/j.AGCS.2017.20170276. |
[8] |
WU Ziyin, JIN Xianglong, LI Jiabiao, et al. Linear sand ridges on the outer shelf of the east China Sea[J]. Chinese Science Bulletin, 2005,50(21):2517-2528. DOI: 10.1007/BF03183643.
doi: 10.1007/BF03183643 |
[9] |
ZHOU Jieqiong, WU Ziyin, ZHAO Dineng, et al. Giant sand waves on the Taiwan Banks, southern Taiwan Strait: Distribution, morphometric relationships, and hydrologic influence factors in a tide-dominated environment[J]. Marine Geology, 2020,427, 106238. DOI: 10.1016/j.margeo.2020.106238.
doi: 10.1016/j.margeo.2020.106238 |
[10] |
WU Ziyin, LI Jiabiao, JIN Xianglong, et al. Distribution, features, and influence factors of the submarine topographic boundaries of the Okinawa Trough[J]. Science China Earth Sciences, 2014,57(8):1885-1896. DOI: 10.1007/s11430-013-4810-3.
doi: 10.1007/s11430-013-4810-3 |
[11] |
WU Ziyin, JIN Xianglong, ZHOU Jieqiong, et al. Comparison of buried sand ridges and regressive sand ridges on the outer shelf of the East China Sea[J]. Marine Geophysical Research, 2017,38(1-2):187-198. DOI: 10.1007/s11001-016-9278-z.
doi: 10.1007/s11001-016-9278-z |
[12] |
ZHOU Jieqiong, WU Ziyin, JIN Xianglong, et al. Observations and analysis of giant sand wave fields on the Taiwan Banks, Northern South China Sea[J]. Marine Geology, 2018,406(1):132-141.
doi: 10.1016/j.margeo.2018.09.015 |
[13] |
ZHAO Jianhu, MENG Junxia, ZHANG Hongmei, et al. A new method for acquisition of high-resolution seabed topography by matching seabed classification images[J]. Remote Sensing, 2017,9(12):1214. DOI: 10.3390/rs9121214
doi: 10.3390/rs9121214 |
[14] |
ZHAO Jianhu, YAN Jun, ZHANG Hongmei, et al. A new method for weakening the combined effect of residual errors on multibeam bathymetric data[J]. Marine Geophysical Research, 2014,35(4):379-394. DOI: 10.1007/s11001-014-9228-6.
doi: 10.1007/s11001-014-9228-6 |
[15] | WU Ziyin, YANG Fanlin, LUO Xiaowen, et al. High-resolution submarine topography-Theory and technology for surveying and post-processing[M]. Beijing: Science Press, 2017. |
[16] | ZHAO Jianhu, WANG Aixue. Precise marine surveying and data processing technology and their progress of application[J]. Hydrographic Surveying and Charting, 2015,35(6):1-7. DOI: 10.3969/j.issn.1671-3044.2015.06.001. |
[17] | WU Ziyin, YANG Fanlin, LI Shoujun, et al. High-resolution submarine topography-visual computation and scientific applications[M]. Beijing: China Science Press, 2017. |
[18] |
FARR H K. Multibeam bathymetric sonar:sea beam and hydro chart[J]. Marine Geodesy, 1980,4(2):77-93. DOI: 10.1080/15210608009379375.
doi: 10.1080/15210608009379375 |
[19] | YANG Fanlin, LI Jiabiao, WU Ziyin, et al. The methods of high quality post-processing for shallow multibeam data[J]. Acta Geodaetica et Cartographica Sinica, 2008,37(4):444-450, 457. DOI: 10.3321/j.issn:1001-1595.2008.04.008. |
[20] |
LUCIEER V, HUANG Zhi, SIWABESSY J. Analyzing uncertainty in multibeam bathymetric data and the impact on derived seafloor attributes[J]. Marine Geodesy, 2016,39(1):32-52. DOI: 10.1080/01490419.2015.1121173.
doi: 10.1080/01490419.2015.1121173 |
[21] |
REZVANI M H, SABBAGH A, ARDALAN AA. Robust automatic reduction of multibeam bathymetric data based on M-estimators[J]. Marine Geodesy, 2015,38(4):327-344. DOI: 10.1080/01490419.2015.1053639.
doi: 10.1080/01490419.2015.1053639 |
[22] |
BOURILLET J F, EDY C, RAMBERT F, et al. Swath mapping system processing:bathymetry and cartography[J]. Marine Geophysical Researches, 1996,18(2-4):487-506. DOI: 10.1007/bf00286091.
doi: 10.1007/BF00286091 |
[23] |
CARESS D W, CHAYES D N. Improved processing ofhydrosweep DS multibeam data on the R/V Maurice Ewing[J]. Marine Geophysical Researches, 1996,18(6):631-650. DOI: 10.1007/bf00313878.
doi: 10.1007/BF00313878 |
[24] |
PEREDA GARCÍA R, PINA GARCÍA F, DE LUIS RUIZ J M, , et al. Model for the processing and estimation of dual frequency echo sounder observations in detailed bathymetries[J]. Marine Geodesy, 2016,39(3-4):305-320. DOI: 10.1080/01490419.2016.1193577.
doi: 10.1080/01490419.2016.1193577 |
[25] | EEG J. On the identification of spikes in soundings[J]. International Hydrographic Review, 1995,72(1):33-41. |
[26] | DEBESE N. Use of a robust estimator for automatic detection of isolated errors appearing in the bathymetry data[J]. International Hydrographic Review, 2001,2(2):32-44. |
[27] | DEBESE N. Multibeam echosounder data cleaning through an adaptive surface-based approach [C]//Proceedings of the US Hydrographic Conference. Norfolk: [s.n.], 2007: 1-18. |
[28] |
LECOURS V, DOLAN M F J, MICALLEF A, et al. A review of marine geomorphometry, the quantitative study of the seafloor[J]. Hydrology and Earth System Sciences, 2016,20(8):3207-3244. DOI: 10.5194/hess-20-3207-2016.
doi: 10.5194/hess-20-3207-2016 |
[29] | ZHANG Zhiheng, PENG Rencan, HUANG Wenqian, et al. An improved algorithm of tendency surface filtering in multi-beam bathymetric data considering the natural neighboring points influence field[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(1):35-47. DOI: 10.11947/j.AGCS.2018.20160565. |
[30] | DU Z, WELLS D, MAYER L. An approach to automatic detection of outliers inmultibeam echo sounding data[J]. Hydrographic Journal, 1996,79(1):19-25. |
[31] |
LADNER R W, ELMORE P, PERKINS A L, et al. Automated cleaning and uncertainty attribution of archival bathymetry based on a priori knowledge[J]. Marine Geophysical Research, 2017,38(3):291-301.DOI: 10.1007/s11001-017-9304-9.
doi: 10.1007/s11001-017-9304-9 |
[32] |
CANEPA G, BERGEM O, PACE N G. A new algorithm for automatic processing of bathymetric data[J]. IEEE Journal of Oceanic Engineering, 2003,28(1):62-77.DOI: 10.1109/joe.2002.808204.
doi: 10.1109/JOE.2002.808204 |
[33] | SHAW S, ARNOLD J. Automated error detection inmultibeam bathymetry data [C]//Proceedings of IEEE OCEANS’93. Victoria, BC, Canada: IEEE, 1993: 89-94. DOI: 10.1109/OCEANS.1993.326072. |
[34] | CALDER B R, WELLS D. CUBE usermanual[M]. [s.l.]: University of New Hampshire, 2004. |
[35] | CALDER B R, MAYER L A. Robust automatic multi-beam bathymetric processing [C]//US Hydrographic Conference. Norfolk(VA): [s.n.], 2001: 1-20. |
[36] | CALDER B R, MAYER L A. Automatic processing of high-rate, high-density multibeam echosounder data[J]. Geochemistry, Geophysics, Geosystems, 2003,4(6):1048. DOI: 10.1029/2002gc000486. |
[37] | CALDER B R, SMITH S. A time comparison of computer-assisted and manual bathymetric processing[J]. International Hydrographic Review, 2004,5(1):10-23. |
[38] | NOAA Field Procedures Manual[EB/OL].[2019-06-10].https://nauticalcharts.noaa.gov/publications/docs/standards-and-requirements/fpm/2014-fpm-final.pdf. |
[39] | HOWLETT C. Considerations and advantages of accepting CUBE surfaces as survey deliverables [C]//Proceedings of the NSHC 29th Conference. Brest: [s.n.], 2010. |
[40] | MALLACE D, GEE L. Multibeam processing-the end to manual editing?[J]. International Hydrographic Review, 2005,6(1):55-65. |
[41] | MALLACE D, ROBERTSON P. Alternative use of CUBE: how to fit a square peg in a round hole [C]//US Hydrographic Conference 2007. Norfolk(VA): [s.n.], 2007: 1-12. |
[42] | VÁSQUEZ M E, NICHOLS S, CLARKE J H. Tuning the CARIS implementation of CUBE forpatagonian waters[D]. Fredericton: University of New Brunswick, 2007. |
[43] | PARK Y, JUNG N D, DO JANG N, et al. Performance validation of surface filter based on CUBE algorithm for eliminating outlier in multi beam echo sounding[EB/OL]. [2019-06-10].https://www.hydrographicsociety.org/documents/hydrographicsociety.org/downloads/ifhs_news_no_1_-_yosup_park_et_al.pdf. |
[44] | WANG Degang, YE Yincan. The theory of CUBE algorithm and its application in the processing of multi-beam data[J]. Journal of Marine Sciences, 2008,26(2):82-88. DOI: 10.3969/j.issn.1001-909X.2008.02.012. |
[45] | HUANG Chenhu, LU Xiuping, HOU Shixi, et al. Study on detecting outlier of multibeam sounding based on CUBE algorithm[J]. Hydrographic Surveying and Charting, 2010,30(3):1-5. DOI: 10.3969/j.issn.1671-3044.2010.03.001. |
[46] | JIA Shuaidong, Zhang Lihua, CAO Hongbo. A method for eliminating outliers of multibeam echosounder data based on CUBE[J]. Science of Surveying and Mapping, 2010,35(S1):57-59, 94. |
[47] | HUANG Motao, ZHAI Guojun, CHAI Hongzhou, et al. Analysis on the mathematical models of CUBE algorithm for the detection of abnormal data in multibeam echosounding[J]. Hydrographic Surveying and Charting, 2011,31(4):1-4. DOI: 10.3969/j.issn.1671-3044.2011.04.001. |
[48] | WANG Haidong, CHAI Hongzhou. Research on multibeam bathymetry data automatic processing based on CUBE algorithm[J]. Marine Science Bulletin, 2011,30(3):246-251. DOI: 10.3969/j.issn.1001-6392.2011.03.002.90 |
[49] | HARE R, GODIN A, MAYER L A. Accuracy estimation ofcanadian swath (multibeam) and sweep (multitransducer) sounding systems[R]. Fredericton: Canadian Hydrographic Service, 1995. |
[50] | HARE R. Error Budget Analysis for US Naval Oceanographic Office (NAVOCEANO) Hydrographic Survey Systems[EB/OL]. [2019-06-10].http://www.academia.edu/10086841/Error_Budget_Analysis_For_NAVO. |
[51] | HARE R, EAKINS B, AMANTE C. Modelling bathymetric uncertainty[J]. International Hydrographic Review, 2011,6(1):31-42. |
[52] | International Hydrographic Organization. IHO standards for hydrographic surveys[EB/OL].[2019-06-10].http://www.iho.int/iho_pubs/standard/S-44_5E.pdf. |
[53] | CALDER B. Automatic statistical processing of multibeam echosounder data[J]. International Hydrographic Review, 2003,4(1):53-68. |
[54] | Teledyne CARIS, Inc. CARIS HIPS and SIPS, Version: 10.2.2[EB/OL]. [2019-06-10]. http://www.teledynecaris.com/docs/4.4.11/hips%20and%20sips/index.html#page/CARIS%2520HIPS%2520and%2520SIPS%2520Help%2FA26A69.html%23. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||