[1] |
GUAN Zelin, GUAN Zheng, HUANG Motao , et al. Theory and Method of Regional Gravity Field Approximation[M]. Beijing: Surveying and Mapping Press, 1997.
|
[2] |
HEISKANNEN W A, MORITZ H . Physical Geodesy[J]. Bulletin Géodésique, 1967,86(1):491-492. DOI: 10.1007/BF02525647
|
[3] |
VANÍČEK P, HUANG J, NOVÁK P , et al. Determination of the Boundary Values for the Stokes-Helmert Problem[J]. Journal of Geodesy, 1999,73(4):180-192. DOI: 10.1007/s001900050235
|
[4] |
LI Jiancheng . The Recent Chinese Terrestrial Digital Height Datum Model:Gravimetric Quasi-geoid CNGG2011[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(5):651-660.
|
[5] |
HUANG Jianliang, VÉRONNEAU M . Canadian Gravimetric Geoid Model 2010[J]. Journal of Geodesy, 2013,87(8):771-790. DOI: 10.1007/s00190-013-0645-0
|
[6] |
WANG Y M, SALEH J, LI X , et al. The US Gravimetric Geoid of 2009(USGG2009):Model Development and Evaluation[J]. Journal of Geodesy, 2012,86(3):165-180. DOI: 10.1007/s00190-011-0506-7
|
[7] |
RONG Min . Stokes-Helmert Method for Geoid Determination[D]. Zhengzhou: Information Engineering University, 2015: 43-68. http://cdmd.cnki.com.cn/Article/CDMD-90005-1016058463.htm
|
[8] |
SJÖBERG L E . Topographic Effects by the Stokes-Helmert Method of Geoid and Quasi-geoid Determinations[J]. Journal of Geodesy, 2000,74(2):255-268. DOI: 10.1007/s001900050284
|
[9] |
SJÖBERG L E, NAHAVANDCHI H . On the Indirect Effect in the Stokes-Helmert Method of Geoid Determination[J]. Journal of Geodesy, 1999,73(2):87-93. DOI: 10.1007/s001900050222
|
[10] |
NAHAVANDCHI H . The Direct Topographical Correction in Gravimetric Geoid Determination by the Stokes-Helmert Method[J]. Journal of Geodesy, 2000,74(6):488-496.DOI: 10.1007/s001900000110
|
[11] |
NAHAVANDCHI H . Terrain Correction Computations by Spherical Harmonics and Integral Formulas[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 1999,24(1):73-78.DOI: 10.1016/S1464-1895(98)00013-1
|
[12] |
LUO Zhicai, CHEN Yongqi, NING Jinsheng . Effect of Terrain on the Determination of High Precise Local Gravimetric Geoid[J]. Geomatics and Information Science of Wuhan University, 2003,28(3):340-344.
|
[13] |
ZHANG Chuanyin, CHAO Dingbo, DING Jian , et al. Precision Topographical Effects for Any Kind of Field Quantities for Any Altitude[J]. Acta Geodaetica et Cartographica Sinica, 2009,38(1):28-34. DOI: 10.3321/j.issn:1001-1595.2009.01.006
|
[14] |
GUO Chunxi, WANG Huimin, WANG Bin . Determination of High Resolution Grid Terrain and Isostatic Corrections in All China Area[J]. Acta Geodaetica et Cartographica Sinica, 2002,31(3):201-205. DOI: 10.3321/j.issn:1001-1595.2002.03.004
|
[15] |
ZHANG Chuanyin, CHAO Dingbo, DING Jian , et al. Arithmetic and Characters Analysis of Terrain Effects for CM-order Precision Height Anomaly[J]. Acta Geodaetica et Cartographica Sinica, 2006,35(4):308-314. DOI: 10.3321/j.issn:1001-1595.2006.04.003
|
[16] |
RONG Min, ZHOU Wei . Study on Topography Correction Based on Spherical Approximation[J]. Journal of Geodesy and Geodynamics, 2015,35(1):58-61.
|
[17] |
MA Jian, WEI Ziqing, WU Lili , et al. The Bouguer Correction Algorithm for Gravity with Limited Range[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(1):26-33.DOI: 10.11947/j.AGCS.2017.20160173
|
[18] |
WEI Ziqing . Introduction to the Second Geodetic Boundary-value Problem with the Geocentric Reference Ellipsoidal Surface as the Boundary[J]. Geomatics Science and Engineering, 2015,35(1):1-6.
|
[19] |
WANG Y M . Precise Computation of the Direct and Indirect Topographic Effects of Helmert’s 2nd Method of Condensation Using SRTM30 Digital Elevation Model[J]. Journal of Geodetic Science, 2011,1(4):305-312.
|
[20] |
MAKHLOOF A A, ILK K H . Far-zone Effects for Different Topographic-compensation Models Based on a Spherical Harmonic Expansion of the Topography[J]. Journal of Geodesy, 2008,82(10):613-635. DOI: 10.1007/s00190-008-0214-0
|
[21] |
NOVÁK P, NOVÁK P, VANÍČEK P, MARTINEC Z , et al. Effects of the Spherical Terrain on Gravity and the Geoid[J]. Journal of Geodesy, 2001,75(9-10):491-504. DOI: 10.1007/s001900100201
|
[22] |
MARTINEC Z, VANÍČEK P . The Indirect Effect of Topography in the Stokes-Helmert Technique for a Spherical Approximation of the Geoid[J]. Manuscript Geodaetica, 1994(19):213-219.
|
[23] |
NAGY D, GAPP G, BENEDEK J . The Gravitational Potential and Its Derivatives for the Prism[J]. Journal of Geodesy, 2000,74(7-8):552-560. DOI: 10.1007/s001900000116
|
[24] |
FORSBERG R . A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling[R]. Columbus: Ohio State University, 1984.
|
[25] |
MA Jian, WEI Ziqing, SHEN Chen , et al. Transformation Relation Between the Topographic Correction and the Direct Topographic Effect[J]. Journal of Geomatics Science and Technology, 2017,34(3):245-250.
|
[26] |
WICHIENCHAROEN C . The Indirect Effects on the Computation of Geoid Undulations[R]. [S.l.]: NASA, 1982.
|
[27] |
MARTINEC Z . Boundary-value Problems for Gravimetric Determination of a Precise Geoid[M]. Berlin: Springer, 1998.
|