[1] |
GOFFART J P, OLIVIER M, FRANKINET M. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: past-present-future[J]. Potato Research, 2008,51(3-4):355-383.
|
[2] |
ZHANG C, KOVACS J M. The application of small unmanned aerial systems for precision agriculture: a review[J]. Precision Agriculture, 2012,13(6):693-712.
|
[3] |
CILIA C, PANIGADA C, ROSSINI M, et al. Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery[J]. Remote Sensing, 2014,6(7):6549-6565.
|
[4] |
JAY S, MAUPAS F, BENDOULA R, et al. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping[J]. Field Crops Research, 2017,210:33-46.
|
[5] |
CASA R, UPRETI D, PELOSI F. Measurement and estimation of leaf area index (LAI) using commercial instruments and smartphone-based systems[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019,275(1):012006.
|
[6] |
ROUSE JR J W. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation[J]. 1973.
|
[7] |
RONDEAUX G, STEVEN M, BARET F. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996,55(2):95-107.
|
[8] |
PASOLLI E, MELGANI F, ALAJLAN N, et al. Active learning methods for biophysical parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(10):4071-4084.
|
[9] |
VERRELST J, RIVERA J P, VEROUSTRAETE F, et al. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-A comparison[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,108:260-272.
|
[10] |
DURBHA S S, KING R L, YOUNAN N H. Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer[J]. Remote Sensing of Environment, 2007,107(1-2):348-361.
|
[11] |
LÁZARO-GREDILLA M, TITSIAS M K, VERRELST J, et al. Retrieval of biophysical parameters with heteroscedastic Gaussian processes[J]. IEEE Geoscience and Remote Sensing Letters, 2013,11(4):838-842.
|
[12] |
CHAI L, QU Y, ZHANG L, et al. Lai retrieval from cyclopes and modis products using artificial neural networks[C]//IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2008, 3: III-1064-III-1067.
|
[13] |
WEISS M, BARET F. S2ToolBox Level 2 products: LAI, FAPAR, FCOVER, Version 1.1[J]. ESA Contract Nr. 4000110612/14/1-BG, 2016: 52.
|
[14] |
VERRELST J, CAMPS-VALLS G, MUÑOZ-MARÍ J, et al. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties-A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,108:273-290.
|
[15] |
WILLIAMS C K I, RASMUSSEN C E. Gaussian processes for machine learning[M]. Cambridge, MA: MIT Press, 2006.
|
[16] |
VERRELST J, DETHIER S, RIVERA J P, et al. Active learning methods for efficient hybrid biophysical variable retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2016,13(7):1012-1016.
|
[17] |
VERRELST J, MALENOVSKY Z, VAN DER TOL C, et al. Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods[J]. Surveys in Geophysics, 2019,40(3):589-629.
doi: 10.1007/s10712-018-9478-y
|
[18] |
PIGNATTI S, PALOMBO A, PASCUCCI S, et al. The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring [C]//2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS. IEEE, 2013: 4558-4561.
|
[19] |
GUANTER L, KAUFMANN H, SEGL K, et al. The EnMAPspaceborne imaging spectroscopy mission for earth observation[J]. Remote Sensing, 2015,7(7):8830-8857.
doi: 10.3390/rs70708830
|
[20] |
JACQUEMOUD S, VERHOEF W, BARET F, et al. PROSPECT+ SAIL models: A review of use for vegetation characterization[J]. Remote Sensing of Environment, 2009,113:S56-S66.
|
[21] |
BACOUR C, JACQUEMOUD S, TOURBIER Y, et al. Design and analysis of numerical experiments to compare four canopy reflectance models[J]. Remote Sensing of Environment, 2002,79(1):72-83.
|
[22] |
BARET F, LEROY M, ROUJEAN J L, et al. CYCLOPES User Requirement Document[J]. INRA-CSE, Avignon, 2003.
|
[23] |
HAGAN M T, MENHAJ M B. Training feedforward networks with the Marquardt algorithm[J]. IEEE transactions on Neural Networks, 1994,5(6):989-993.
pmid: 18267874
|
[24] |
BREIMAN L. Bagging predictors[J]. Machine Learning, 1996,24(2):123-140.
|
[25] |
WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1987,2(1-3):37-52.
|
[26] |
BREIMAN L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
|
[27] |
DRAPER N R, SMITH H. Applied regression analysis[M]. [S.l.]: John Wiley & Sons, 1998.
|
[28] |
GELADI P, KOWALSKI B R. Partial least-squares regression: a tutorial[J]. Analyticachimicaacta, 1986,185:1-17.
|
[29] |
FRIEDMAN J, HASTIE T, TIBSHIRANI R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors)[J]. The Annals of Statistics, 2000,28(2):337-407.
|
[30] |
BREIMAN L, FRIEDMAN J, STONE C J, et al. Classification and regression trees[M]. CRC Press, 1984.
|
[31] |
SAARELA M, ELOMAA T, RUOHONEN K. An analysis of relevance vector machine regression[M] //Advances in Machine Learning I. Heidelberg: Springer, 2010: 227-246.
|
[32] |
VAPNIK V, GOLOWICH S E, SMOLA A J. Support vector method for function approximation, regression estimation and signal processing [C]//Advances in neural information processing systems. 1997: 281-287.
|
[33] |
SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999,9(3):293-300.
|
[34] |
HUANG G, HUANG G B, SONG S, et al. Trends in extreme learning machines: a review[J]. Neural Networks, 2015,61:32-48.
pmid: 25462632
|
[35] |
VERRELST J, RIVERA J P, ALONSO L, et al. ARTMO: an automated radiative transfer models operator toolbox for automated retrieval of biophysical parameters through model inversion [C]//Proceedings of EARSeL 7th SIG-Imag. Spectrosc. Workshop. 2011: 11-13.
|
[36] |
UPRETI D, HUANG W, KONG W, et al. A comparison of hybrid machine learning algorithms for the retrieval of wheat biophysical variables from sentinel-2[J]. Remote Sensing, 2019,11(5):481.
|
[37] |
DOUAK F, MELGANI F, BENOUDJIT N. Kernel ridge regression with active learning for wind speed prediction[J]. Applied Energy, 2013,103:328-340.
|
[38] |
VERRELSTJ, MUÑOZ J, ALONSO L, et al. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3[J]. Remote Sensing of Environment, 2012,118:127-139.
|
[39] |
VERRELST J, ALONSO L, CAMPS-VALLS G, et al. Retrieval of vegetation biophysical parameters using Gaussian process techniques[J]. IEEE Transactions on Geoence & Remote Sensing, 2012,50(5):1832-1843.
|
[40] |
RIVERA-CAICEDO J P, VERRELST J, MUÑOZ-MARÍ J, et al. Hyperspectral dimensionality reduction for biophysical variable statistical retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,132:88-101.
|