Journal of Geodesy and Geoinformation Science ›› 2020, Vol. 3 ›› Issue (4): 126-136.doi: 10.11947/j.JGGS.2020.0413
Kunpeng XU1(),Lei ZHAO1(),Kun LI2,Erxue CHEN1,Wangfei ZHANG3,Hao YANG4
Received:
2020-10-06
Accepted:
2020-11-30
Online:
2020-12-20
Published:
2021-01-15
Contact:
Lei ZHAO
E-mail:xkp1231@163.com;zhaolei@ifrit.ac.cn
About author:
Kunpeng XU (1992—), male, PhD student, majors in polarimetric SAR applications to forestry and agriculture.E-mail: Supported by:
Kunpeng XU,Lei ZHAO,Kun LI,Erxue CHEN,Wangfei ZHANG,Hao YANG. Estimation of Crop Biomass Using GF-3 Polarization SAR Data Based on Genetic Algorithm Feature Selection[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(4): 126-136.
Tab.1
Features description"
Feature type | Feature name | Description | Number |
---|---|---|---|
Polarization features | |HH|,|HV|,|VV|,|HH+ VV|,|HH-VV|,SPAN | Backscattering coefficients parameters | 16 |
FreemanOdd, FreemanVol, FreemanDbl | Freeman-Durden decom- position parameters | ||
Entropy, alpha | H-Alpha decompo- sition parameters | ||
ANNEDOdd, ANNEDVol, ANNEDDbl | Adaptive model-based decomposition | ||
RVI, Lueneburg entropy | Radar vegetation index and Lueneburg entropy | ||
Textural features | Mean,Homogeneity,Unifor- mity,Dissimilarity,Contrast | GLCM textural features | 5 |
Tab.1
Features description"
Feature type | Feature name | Description | Number |
---|---|---|---|
Polarization features | |HH|,|HV|,|VV|,|HH+ VV|,|HH-VV|,SPAN | Backscattering coefficients parameters | 16 |
FreemanOdd, FreemanVol, FreemanDbl | Freeman-Durden decom- position parameters | ||
Entropy, alpha | H-Alpha decompo- sition parameters | ||
ANNEDOdd, ANNEDVol, ANNEDDbl | Adaptive model-based decomposition | ||
RVI, Lueneburg entropy | Radar vegetation index and Lueneburg entropy | ||
Textural features | Mean,Homogeneity,Unifor- mity,Dissimilarity,Contrast | GLCM textural features | 5 |
Tab.3
Feature combinations based on different feature selection methods"
Feature selection method | Crop type | Selected feature combinations | Quantity |
---|---|---|---|
Feature selection based on linear correlation | Wheat | |HH|, |VV|, |HH+VV|, |HH-VV|, SPAN, Mean, Contrast | 7 |
Rape | |HH|, | HH-VV |, SPAN, FreemanDbl, ANNEDDbl, Uniformity, Contrast | 7 | |
Feature selection of GA | Wheat | |HV|, alpha, RVI, FreemanVol, ANNEDOdd, ANNEDVol, Contrast | 7 |
Rape | |HV|, SPAN, Lueneburg Entropy, FreemanVol, ANNEDDbl, ANNEDVol, Mean, Contrast | 9 | |
RFE | Wheat | |VV|, |HH+VV|, |HH-VV|, FreemanOdd, ANNEDOdd, SPAN, Homogeneity, Dissimilarity, Contrast | 9 |
Rape | FreemanDbl, FreemanOdd, Homogeneity, Dissimilarity, Contrast | 5 |
Tab.3
Feature combinations based on different feature selection methods"
Feature selection method | Crop type | Selected feature combinations | Quantity |
---|---|---|---|
Feature selection based on linear correlation | Wheat | |HH|, |VV|, |HH+VV|, |HH-VV|, SPAN, Mean, Contrast | 7 |
Rape | |HH|, | HH-VV |, SPAN, FreemanDbl, ANNEDDbl, Uniformity, Contrast | 7 | |
Feature selection of GA | Wheat | |HV|, alpha, RVI, FreemanVol, ANNEDOdd, ANNEDVol, Contrast | 7 |
Rape | |HV|, SPAN, Lueneburg Entropy, FreemanVol, ANNEDDbl, ANNEDVol, Mean, Contrast | 9 | |
RFE | Wheat | |VV|, |HH+VV|, |HH-VV|, FreemanOdd, ANNEDOdd, SPAN, Homogeneity, Dissimilarity, Contrast | 9 |
Rape | FreemanDbl, FreemanOdd, Homogeneity, Dissimilarity, Contrast | 5 |
[1] | MCNAIRN H, BRISCO B. The application of C-band polarimetric SAR for agriculture: a review[J]. Canadian Journal of Remote Sensing, 2004,30(3):525-542. |
[2] | MATTIA F, TOAN T L, PICARD G, et al. Multitemporal C-band radar measurements on wheat fields[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,41(7):1551-1560. |
MATTIA F, TOAN T L, PICARD G, et al. Multitemporal C-band radar measurements on wheat fields[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,41(7):1551-1560. | |
[3] | TAO L, LI J, JIANG J, et al. Leaf Area index inversion of winter wheat using RADARSAT-2 data and modified water-cloud model[J]. Journal of Triticeae Crops, 2016,36(2):236-242. |
TAO L, LI J, JIANG J, et al. Leaf Area index inversion of winter wheat using RADARSAT-2 data and modified water-cloud model[J]. Journal of Triticeae Crops, 2016,36(2):236-242. | |
[4] |
HOSSEINI M, MCNAIRN H. Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields[J]. International Journal of Applied Earth Observation & Geoinformation, 2017. DOI: 10.1016/j.jag.2017.01.006.
doi: 10.1016/j.jag.2004.07.001 pmid: 22545030 |
HOSSEINI M, MCNAIRN H. Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields[J]. International Journal of Applied Earth Observation & Geoinformation, 2017. DOI: 10.1016/j.jag.2017.01.006.
doi: 10.1016/j.jag.2004.07.001 pmid: 22545030 |
|
[5] |
HOSSEINI M, MCNAIRN H, MERZOUKI A, et al. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data[J]. Remote Sensing of Environment, 2015. DOI: 10.1016/j.rse.2015.09.002.
pmid: 31359890 |
HOSSEINI M, MCNAIRN H, MERZOUKI A, et al. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data[J]. Remote Sensing of Environment, 2015. DOI: 10.1016/j.rse.2015.09.002.
pmid: 31359890 |
|
[6] | YANG H, XIE L, CHEN E, et al. Biomass estimation of oilseed rape using simulated compact polarimtric SAR imagery [C]//GARSS 2016—2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016. |
YANG H, XIE L, CHEN E, et al. Biomass estimation of oilseed rape using simulated compact polarimtric SAR imagery [C]//GARSS 2016—2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing: IEEE, 2016. | |
[7] | ZHANG W, LI Z, CHEN E, et al. Compact polarimetric response of rape (Brassica napus L.) at C-band: analysis and growth parameters inversion[J]. Remote Sensing, 2017,9(6):591. |
ZHANG W, LI Z, CHEN E, et al. Compact polarimetric response of rape (Brassica napus L.) at C-band: analysis and growth parameters inversion[J]. Remote Sensing, 2017,9(6):591. | |
[8] | SASAN V, JAVAD S, KAMRAN A, et al. Improving accuracy estimation of forest aboveground biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: a case study of the Hyrcanian forest area (Iran)[J]. Remote Sensing, 2018,10(2):172. |
SASAN V, JAVAD S, KAMRAN A, et al. Improving accuracy estimation of forest aboveground biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: a case study of the Hyrcanian forest area (Iran)[J]. Remote Sensing, 2018,10(2):172. | |
[9] | CHANDRASHEKAR G, SAHIN F. A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014,40(1):16-28. |
CHANDRASHEKAR G, SAHIN F. A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014,40(1):16-28. | |
[10] | GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002,46(1-3):389-422. |
GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002,46(1-3):389-422. | |
[11] | LIU XIAOXIAO, WANG LIANG, XU SHENGHUA, et al. A remote sensing feature selection method of forest biomass estimation based on RF-RFE[J]. Science of Surveying and Mapping, 2017,42(05):100-105. |
LIU XIAOXIAO, WANG LIANG, XU SHENGHUA, et al. A remote sensing feature selection method of forest biomass estimation based on RF-RFE[J]. Science of Surveying and Mapping, 2017,42(05):100-105. | |
[12] | MARYAM S, SAHEBI M R, YASSER M. Improving the accuracy of urban land cover classification using Radarsat-2 PolSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(4):1394-1401. |
MARYAM S, SAHEBI M R, YASSER M. Improving the accuracy of urban land cover classification using Radarsat-2 PolSAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(4):1394-1401. | |
[13] | ATAOLLAH H G, SAHEBI M R, MANSOURIAN A. Polarimetric SAR feature selection using a genetic algorithm[J]. Canadian Journal of Remote Sensing, 2011,37(1):10. |
ATAOLLAH H G, SAHEBI M R, MANSOURIAN A. Polarimetric SAR feature selection using a genetic algorithm[J]. Canadian Journal of Remote Sensing, 2011,37(1):10. | |
[14] | ZHAO L, CHEN E, LI Z, et al. Three-step semi-empirical radiometric terrain correction approach for PolSAR data applied to forested areas[J]. Remote Sensing, 2017,9(3):269. |
ZHAO L, CHEN E, LI Z, et al. Three-step semi-empirical radiometric terrain correction approach for PolSAR data applied to forested areas[J]. Remote Sensing, 2017,9(3):269. | |
[15] | FREEMAN A, DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience & Remote Sensing, 1998,36(3):963-973. |
FREEMAN A, DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience & Remote Sensing, 1998,36(3):963-973. | |
[16] | CLOUDE S R, POTTIER E. An entropy based classication scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997. DOI: 10.1109/36.551935. |
CLOUDE S R, POTTIER E. An entropy based classication scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997. DOI: 10.1109/36.551935. | |
[17] | ARII M, ZYL J J V, KIM Y. Adaptive Model-Based Decomposition of Polarimetric SAR covariance matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(3):1104-1113. |
ARII M, ZYL J J V, KIM Y. Adaptive Model-Based Decomposition of Polarimetric SAR covariance matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(3):1104-1113. | |
[18] | YAMADA Y. Preliminary Study on the Radar Vegetation Index (RVI) Application to actual paddy fields by ALOS/PALSAR full-polarimetry SAR data[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015,40(7):129. |
YAMADA Y. Preliminary Study on the Radar Vegetation Index (RVI) Application to actual paddy fields by ALOS/PALSAR full-polarimetry SAR data[J]. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015,40(7):129. | |
[19] | LUNEBURG E. Foundations of the mathematical theory of polarimetry[R]. Final Report PhaseI. N00014-00-M-0152, EML Consultants, 2001. |
LUNEBURG E. Foundations of the mathematical theory of polarimetry[R]. Final Report PhaseI. N00014-00-M-0152, EML Consultants, 2001. | |
[20] | DE SIQUEIRA F R, SCHWARTZ W R, PEDRINI H. Multi-scale gray level co-occurrence matrices for texture description[J]. Neurocomputing, 2013. DOI: 10.1016/j.neucom.2012.09.042. |
DE SIQUEIRA F R, SCHWARTZ W R, PEDRINI H. Multi-scale gray level co-occurrence matrices for texture description[J]. Neurocomputing, 2013. DOI: 10.1016/j.neucom.2012.09.042. | |
[21] | PEDREGOSA F, GRAMFORT A, MICHEL V, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2013,12(10):2825-2830. |
PEDREGOSA F, GRAMFORT A, MICHEL V, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2013,12(10):2825-2830. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||