[1] |
LIU Jing , LIPeijun. A high resolution image segmentation method by combined structural and spectral characteristics[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(5):466-473. DOI: 10.13485/j.cnki.11-2089.2014.0087.
|
[2] |
ZHOU Chenghu, LUO Jiancheng. Geo-computing of high resolution satellite remote sensing image[M]. Beijing: Science Press, 2009.
|
[3] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015: 3431-3440.
|
[4] |
WANG Hongzhen, WANG Ying, ZHANG Qian , et al. Gated convolutional neural network for semantic segmentation in high-resolution images[J]. Remote Sensing, 2017,9(5):446.
|
[5] |
GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S , et al. A review on deep learning techniques applied to semantic segmentation[J]. arXiv:1704. 06857, 2017.
|
[6] |
HUBEL D H . The visual cortex of the brain[J]. Scientific American, 1963,209:54-62. DOI: 10.1038/scientificamerican1163-54.
|
[7] |
KRÄHENBVHL P, KOLTUN V . Efficient inference in fully connected crfs with gaussian edge potentials[J]. arXiv:1210.5644, 2012: 109-117.
|
[8] |
Rother C, Kolmogorov V, Blake A . “Grabcut”-interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004: 23(3):309-314. DOI: 10.1049/ el.2009.2014.
|
[9] |
SHOTTON J, WINN J, ROTHER C , et al. Textonboost for image understanding:multi-class object recognition and segmentation by jointly modeling texture, layout, and context[J]. International Journal of Computer Vision, 2009,81(1):2-23.
|
[10] |
DAI Jifeng, QI Haozhi, XIONG Yuwen , et al. Deformable convolutional networks[J]. arXiv:1703.06211, 2017: 764-773.
|
[11] |
LUO Wenjie, LI Yujia, URTASUN R , et al. Understanding the effective receptive field in deep convolutional neural networks[J]. arXiv:1701.04128, 2017.
|
[12] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
|
[13] |
HOLSCHNEIDER M, KRONLAND-MARTINET R, MORLET J , et al. A real-time algorithm for signal analysis with the help of the wavelet transform[M]. COMBES J M, GROSSMANN A, TCHAMITCHIAN P. Wavelets:Time-Frequency Methods and Phase Space. Berlin:Springer, 1990: 286-297.
|
[14] |
DENG Jia, DONG Wei, SOCHER R, et al. Imagenet:a large-scale hierarchical image database[C]∥Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009.
|
[15] |
DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN:object detection via region-based fully convolutional networks [C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain:ACM, 2016: 379-387.
|
[16] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R . SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12):2481-2495.
|
[17] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs [C]∥Proceedings of the International Conference on Learning Representations. San Diego, CA:Computational and Biological Learning Society, 2015.
|
[18] |
CHATFIELD K, SIMONYAN K, VEDALDI A , et al. Return of the devil in the details: delving deep into convolutional nets[C]∥Proceedings of the British Machine Vision Conference. Dundee, Britain:BMVA Press, 2014.
|
[19] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
|
[20] |
IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]∥Proceedings of the 32nd International Conference on Machine Learning. Lille, France:JMLR, 2015: 448-456.
|
[21] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers:surpassing human-level performance on imagenet classification[C]∥Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015: 1026-1034.
|
[22] |
CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs) [C]∥Proceedings of the International Conference on Learning Representations. San Diego, CA:Computational and Biological Learning Society, 2015.
|
[23] |
EIGEN D, FERGUS R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture [C]∥Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015: 2650-2658.
|
[24] |
MOSTAJABI M, YADOLLAHPOUR P, SHAKHNAROVICH G. Feedforward semantic segmentation with zoom-out features [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015: 3376-3385.
|
[25] |
ROTHER C, KOLMOGOROV V, BLAKE A. Grabcut:interactive foreground extraction using iterated graph cuts [C]∥Proceedings of the ACM SIGGRAPH 2004. Los Angeles, California:ACM, 2004: 309-314.
|
[26] |
KOHLI P, LADICKY L, TORR P H S. Robust higher order potentials for enforcing label consistency [C]∥Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA:IEEE, 2009.
|
[27] |
KRÄHENBÜHL P, KOLTUN V. Efficient inference in fully connected CRFs with Gaussian edge potentials [C]∥Proceedings of the 25th annual conference on Neural Information Processing Systems. Granada:NIF, 2011.
|
[28] |
ADAMS A, BAEK J, DAVIS M A . Fast high-dimensional filtering using the permutohedral lattice[J]. Computer Graphics Forum, 2010,29(2):753-762.
|
[29] |
GERKE M, ROTTENSTEINER F, WEGNER J D, et al. ISPRS semantic labeling contest[C]∥ Proceedings of PCV-Photogrammetric Computer Vision.[S.l.]:ISPRS, 2014.
|
[30] |
GERKE M. Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (Vaihingen) [C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston, MA, USA:IEEE, 2015.
|
[31] |
PAISITKRIANGKRAI S, SHERRAH J, JANNEY P, et al. Effective semantic pixel labelling with convolutional networks and conditional random fields[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Boston, MA, USA:IEEE, 2015: 36-43.
|
[32] |
AUDEBERT N, LE SAUX B , LEFÈVRE S. Semantic seg-mentation of earth observation data using multimodal and multi-scale deep networks[M]∥LAI S H, LEPETIT V, NISHINO K, et al. Computer Vision-ACCV 2016. Cham:Springer, 2017.
|
[33] |
ZHOU Hao, ZHANG Jun, LEI Jun, et al. Image semantic segmentation based on FCN-CRF model [C]∥Proceedings of International Conference on Image, Vision and Computing. Portsmouth, UK:IEEE, 2016: 9-14.
|