[1] |
SUN Heping, CUI Xiaoming, XU Jianqiao, et al. Progress of research on the Earth’s gravity tides and its application in geodynamics in China[J]. Pure and Applied Geophysics, 2022, 180(2):573-589.DOI:10.1007/s00024-022-03060-6.
|
[2] |
SUN Heping, ZHANG Miaomiao, XU Jiangqiao, et al. Reanalysis of background free oscillations using recent SG data[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30(6): 757-763.
doi: 10.3319/TAO.2019.03.14.03
|
[3] |
LI Hang, XU Jianqiao, CHEN Xiaodong, et al. Extracting long-period surface waves and free oscillations using ambient noise recorded by global distributed superconducting gravimeters[J]. Seismological Research Letters, 2020, 91(4): 2234-2246.
doi: 10.1785/0220190166
|
[4] |
PETERSON J R. Observations and modeling of seismic background noise[R]. Reston, VA: USGS Numbered Series, 1993: 30-42.
|
[5] |
LI Hang, CHEN Xiaodong, XU Jianqiao, et al. Comparison of noise levels between gravimeters and co-located seismometers at the seismic frequency band[J]. Journal of Geodesy and Geodynamics, 2020, 40(8): 843-848.
|
[6] |
SUN Heping, ZHANG Huikang, XU Jianqiao, et al. Influences of the Tibetan Plateau on tidal gravity detected by using SGs at Lhasa, Lijiang and Wuhan Stations in China[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2019, 30(1): 139-149.
doi: 10.3319/TAO.2019.02.14.01
|
[7] |
LIANG Ying, CHEN Xiaodong, SUN Heping, et al. Gravity tide observation with OSG-066 and their applications at Lijiang Station, Yunnan Province, China[J]. Journal of Geodesy and Geodynamics, 2020, 40(7): 713-719.
|
[8] |
CUI Xiaoming, SUN Heping, XU Jianqiao, et al. Relationship between free core nutation and geomagnetic jerks[J]. Journal of Geodesy, 2020, 94(4): 38.
doi: 10.1007/s00190-020-01367-7
|
[9] |
CHEN Xiaodong, LI Hang, DENG Mingli, et al. Experimental study of the surface subsidence in the city using gravity observing techniques[J]. Chinese Journal of Geophysics, 2020, 63(8): 2882-2892.
|
[10] |
ZHANG Miaomiao, CHEN Xiaodong, XU Jianqiao, et al. A preliminary analysis of gravity noise levels at the deep geophysical experimental field in Huainan[J]. Advances in Earth Science, 2021, 36(5): 500-509.
doi: 10.11867/j.issn.1001-8166.2021.033
|
[11] |
WANG Yun, YANG Yaxin, SUN Heping, et al. Observation and research of deep underground multi-physical fields—Huainan —848m deep experiment[J]. Science China Earth Sciences, 2023, 66(1): 54-70.
doi: 10.1007/s11430-022-9998-2
|
[12] |
CHEN Shi, ZHUANG Jiancang, LI Xiaoyi, et al. Bayesian approach for network adjustment for gravity survey campaign: methodology and model test[J]. Journal of Geodesy, 2019, 93(5): 681-700.
doi: 10.1007/s00190-018-1190-7
|
[13] |
WANG Linhai, CHEN Shi, ZHUANG Jiancang, et al. Simultaneous calibration of instrument scale factor and drift rate in network adjustment for continental-scale gravity survey campaign[J]. Geophysical Journal International, 2022, 228(3): 1541-1555.
doi: 10.1093/gji/ggab419
|
[14] |
ZHENG Qiuyue, YAO Xiuyi, CHEN Shi, et al. Data quality assessment of time-variable surface microgravity surveys in the southeastern Tibetan Plateau[J]. Applied Sciences, 2022, 12(7): 3310.
doi: 10.3390/app12073310
|
[15] |
YANG Jinling, CHEN Shi, ZHANG Bei, et al. Gravity observations and apparent density changes before the 2017 Jiuzhaigou Ms 7. 0 earthquake and their precursory significance[J]. Entropy, 2021, 23(12): 1687.
doi: 10.3390/e23121687
|
[16] |
CHEN Zhaohui, CHEN Shi, ZHANG Bei, et al. Uncertainty quantification and field source inversion for the continental-scale time-varying gravity dataset: a case study in SE Tibet, China[J]. Pure and Applied Geophysics, 2023, 180(2): 683-702.
doi: 10.1007/s00024-022-03095-9
|
[17] |
HAN Jiancheng, CHEN Shi, CHEN Zhaohui, et al. Determination of the degree 120 time-variable gravity field in the Sichuan-Yunnan region using Slepian functions and terrestrial measurements[J]. Earthquake Science, 2021, 34(3): 211-221.
doi: 10.29382/eqs-2021-0029
|
[18] |
HAN Jiancheng, CHEN Shi, LU Hongyan, et al. Time-variable gravity field determination using Slepian functions and terrestrial measurements: a case study in North China with data from 2011 to 2013[J]. Chinese Journal of Geophysics, 2021, 64(5): 1542-1557.
|
[19] |
HAN Jiancheng, CHEN Shi, LI Honglei, et al. The recent progress using high-precision terrestrial gravity measurements[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(1): 17-34.
|
[20] |
HAN Yufei, WANG Jian, XU Rugang, et al. Fractal characteristics and earthquake monitoring capability of the CMONOC gravity network[J]. Earthquake Research in China, 2020, 36(4): 879-887.
|
[21] |
JIA Lulu, CHEN Shi, WANG Linhai, et al. Gravity yearly transient change around the epicenter of 2022 Ms 6.9 Menyuan earthquake, China and seismotectonic implications[J]. Tectonophysics, 2023, 846: 229676.
doi: 10.1016/j.tecto.2022.229676
|
[22] |
LIU Xiangchong, CHEN Shi, XING Huilin. Gravity changes caused by crustal fluids invasion: a perspective from finite element modeling[J]. Tectonophysics, 2022, 833: 229335.
doi: 10.1016/j.tecto.2022.229335
|
[23] |
LI Honglei, CHEN Shi, ZHUANG Jiancang, et al. Gravity inversion method base on Bayesian-assimilation and its application in constructing crust density model of the Longmenshan region[J]. Chinese Journal of Geophysics, 2021, 64(4): 1236-1252.
|
[24] |
LI Yongbo, CHEN Shi, LI Honglei, et al. Contrastive analysis of the three-dimensional density structure characteristics of the focal area of moderate-strong earthquakes in southern Sichuan[J]. Chinese Journal of Geophysics, 2022, 65(11): 4326-4340.
|
[25] |
BAO Lifeng, XU Houze. Twin-satellites altimetry mode and its orbit design[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7): 661-667. DOI: 10.13485/j.cnki.11-2089.2014.0109.
|
[26] |
ZHAI Zhenhe, SUN Zhongmiao, XIAO Yun, et al. Two-satellites tandem mode design and accuracy analysis of gravity field inversion for independent marine altimetry satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1030-1035, 1128.
|
[27] |
ANDERSEN O B, KNUDSEN P. The DTU17 global marine gravity field: first validation results[M]// MERTIKASS P, PAILR. International Association of Geodesy Symposia. Cham: Springer, 2019.
|
[28] |
SANDWELL D T, HARPER H, TOZER B, et al. Gravity field recovery from geodetic altimeter missions[J]. Advances in Space Research, 2021, 68(2): 1059-1072.
doi: 10.1016/j.asr.2019.09.011
|
[29] |
LI Qianqian, BAO Lifeng, WANG Yong. Accuracy evaluation of altimeter-derived gravity field models in offshore and coastal regions of China[J]. Frontiers in Earth Science, 2021, 9: 722019.
doi: 10.3389/feart.2021.722019
|
[30] |
SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, et al. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. DOI: 10.11947/j.AGCS.2022.20220069.
|
[31] |
ZHANG Shengjun, ABULAITIJIANG A, ANDERSEN O B, et al. Comparison and evaluation of high-resolution marine gravity recovery via sea surface heights or sea surface slopes[J]. Journal of Geodesy, 2021, 95(6): 66.
doi: 10.1007/s00190-021-01506-8
|
[32] |
ZHU Chengcheng, GUO Jinyun, GAO Jinyao, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1.0[J]. Journal of Geodesy, 2020, 94(5): 50.
doi: 10.1007/s00190-020-01378-4
|
[33] |
JIN Taoyong, ZHOU Mao, ZHANG Huan, et al. Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data[J]. Journal of Geodesy, 2022, 96(4): 30.
doi: 10.1007/s00190-022-01619-8
|
[34] |
YU Daocheng, HWANG C, ANDERSEN O B, et al. Gravity recovery from SWOT altimetry using geoid height and geoid gradient[J]. Remote Sensing of Environment, 2021, 265: 112650.
doi: 10.1016/j.rse.2021.112650
|
[35] |
YUAN Yuan, GAO Jinyao, WU Zhaocai, et al. Performance estimate of some prototypes of inertial platform and strapdown marine gravimeters[J]. Earth, Planets and Space, 2020, 72(1): 89.
doi: 10.1186/s40623-020-01219-w
|
[36] |
CHENG Bing, ZHOU Yin, CHEN Peijun, et al. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship[J]. Acta Physica Sinica, 2021, 70(4): 040304.
doi: 10.7498/aps.70.20201522
|
[37] |
CHE Hao, LI An, FANG Jie, et al. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter[J]. Acta Physica Sinica, 2022, 71(11): 113701.
doi: 10.7498/aps.71.20220113
|
[38] |
SUN Heping, LI Qianqian, BAO Lifeng, et al. Progress and development trend of global refined seafloor topography modeling[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1555-1567.
|
[39] |
ANNAN R F, WAN Xiaoyun. Recovering bathymetry of the gulf of guinea using altimetry-derived gravity field products combined via convolutional neural network[J]. Surveys in Geophysics, 2022, 43(5): 1541-1561.
doi: 10.1007/s10712-022-09720-5
|
[40] |
WAN Xiaoyun, LIU Bo, SUI Xiaohong, et al. Bathymetry inversion using the deflection of the vertical: a case study in South China Sea[J]. Geodesy and Geodynamics, 2022, 13(5): 492-502.
doi: 10.1016/j.geog.2022.03.003
|
[41] |
LIU Hui, WU Lin, BAO Lifeng, et al. Gravity matching navigation algorithm based on multiscale search and Hadamard transformed difference[J]. ISA transactions, 2022, 128: 409-422.
doi: 10.1016/j.isatra.2021.10.013
|
[42] |
LI Qianqian, BAO Lifeng, SHUM C K. Altimeter-derived marine gravity variations reveal the magma mass motions within the subaqueous Nishinoshima volcano, Izu-Bonin Arc, Japan[J]. Journal of Geodesy, 2021, 95(5): 46.
doi: 10.1007/s00190-021-01488-7
|