测绘学报(英文版) ›› 2022, Vol. 5 ›› Issue (2): 124-147.doi: 10.11947/j.JGGS.2022.0212
收稿日期:
2022-02-24
接受日期:
2022-05-07
出版日期:
2022-06-20
发布日期:
2022-07-22
Chengquan HUANG1(),Weishu GONG1,Yong PANG2
Received:
2022-02-24
Accepted:
2022-05-07
Online:
2022-06-20
Published:
2022-07-22
About author:
Chengquan HUANG, E-mail: . [J]. 测绘学报(英文版), 2022, 5(2): 124-147.
Chengquan HUANG,Weishu GONG,Yong PANG. Remote Sensing and Forest Carbon Monitoring—a Review of Recent Progress, Challenges and Opportunities[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(2): 124-147.
"
Model name | Developers/References |
---|---|
BEPS | Chen et al.[ |
Biome-BGC | Bond-Lamberty et al.[ |
Can-IBIS | Foley et al.[ |
CASA | Randerson et al.[ |
CASA GFEDv2 | van der Werf et al.[ |
CENTURY | Parton et al.[ |
CLM-CASA | Randerson et al.[ |
CLM-CN | Thornton et al.[ |
DLEM | Tian et al.[ |
DNDC | Li et al.[ |
ED | Hurtt et al.[ |
EDCM | Liu et al.[ |
FIRE-BGC | Keane et al.[ |
FORCLIM | Bugmann[ |
FOREST-BGC | Running and Gower[ |
FVS | Dixon[ |
HYBRID | Friend et al.[ |
InTEC | Chen et al.[ |
ISAM | Jain and Yang[ |
LANDIS | Mladenoff[ |
LINKAGES | Pastor and Post[ |
LPJ-wsl | Sitch et al.[ |
ORCHIDEE | Krinner et al.[ |
SiB3 | Baker et al.[ |
SORTIE | Pacala et al.[ |
TEM | Raich et al.[ |
"
General category | Variable list |
---|---|
Plant characteristics | Foliar nitrogen, chlorophyll, lignin concentration, leaf area, leaf water content, stress/drought |
Vegetation status | Stand age, species composition, canopy cover, height, volume, biomass |
Vegetation dynamics | Land cover/use change, disturbance, management, harvested wood products, growth rates |
Ecosystem fluxes | SIF, GPP, NPP, NEP, NBP/NEE, FAPAR, ER |
Soil properties | Soil moisture, nutrient, soil organic carbon |
Meteorological variables | Precipitation, temperature (including LST), ET, VPD, PAR |
Atmospheric carbon | CO2, CH4 |
"
Carbon pools | Estimation methods/input data |
---|---|
Aboveground biomass | Ground measurements, remote sensing, land use/disturbance |
Belowground biomass | No change, or modeled based on aboveground biomass |
Dead organic matter | No change, or modeled based on land use/disturbance data |
Soil | No change, or modeled based on land use/disturbance data |
Harvested wood products | FAO database, survey data, remote sensing based |
[1] | IPCC. Climate change 2001: The scientific basis[M]. Cambridge: Cambridge University Press, 2001. |
[2] | IPCC. Climate change 2007:synthesis report. Contribution of working groups Ⅰ, Ⅱ and Ⅲ to the fourth assessment report[M]. Geneva, Switzerland: IPCC, 2007. |
[3] |
CHEN J M. Carbon neutrality: Toward a sustainable future[J]. The Innovation, 2021, 2(3): 100127.
doi: 10.1016/j.xinn.2021.100127 |
[4] |
FAHEY T J, WOODBURY P B, BATTLES J J, et al. Forest carbon storage: ecology, management, and policy[J]. Frontiers in Ecology and the Environment, 2010, 8(5): 245-252.
doi: 10.1890/080169 |
[5] |
AGRAWAL A, NEPSTAD D, CHHATRE A. Reducing emissions from deforestation and forest degradation[J]. Annual Review of Environment and Resources, 2011, 36: 373-396.
doi: 10.1146/annurev-environ-042009-094508 |
[6] | CORBERA E, SCHROEDER H. Governing and implementing REDD+[J]. Environmental Science & Policy, 2011, 14(2): 89-99. |
[7] |
KÖHL M, NEUPANE P R, MUNDHENK P. REDD+ measurement, reporting and verification—a cost trap? Implications for financing REDD+MRV costs by result-based payments[J]. Ecological Economics, 2020, 168: 106513.
doi: 10.1016/j.ecolecon.2019.106513 |
[8] | IPCC. 2006 IPCC guidelines for national greenhouse gas inventories. volume 4: agriculture, forestry and other land use[Z]. Japan: IGES, 2006. |
[9] | IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. volume 4: agriculture, forestry and other land use[Z]. Switzerland: IPCC, 2019. |
[10] |
JACKSON R B, BAKER J S. Opportunities and constraints for forest climate mitigation[J]. BioScience, 2010, 60(9): 698-707.
doi: 10.1525/bio.2010.60.9.7 |
[11] |
RING I, DRECHSLER M, VAN TEEFFELEN A J, et al. Biodiversity conservation and climate mitigation: what role can economic instruments play?[J]. Current Opinion in Environmental Sustainability, 2010, 2(1-2): 50-58.
doi: 10.1016/j.cosust.2010.02.004 |
[12] |
GRACE J. Understanding and managing the global carbon cycle[J]. Journal of Ecology, 2004, 92(2): 189-202.
doi: 10.1111/j.0022-0477.2004.00874.x |
[13] |
SCHIMEL D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology, 1995, 1(1): 77-91.
doi: 10.1111/j.1365-2486.1995.tb00008.x |
[14] |
SCHIMEL D, PAVLICK R, FISHER J B, et al. Observing terrestrial ecosystems and the carbon cycle from space[J]. Global Change Biology, 2015, 21(5): 1762-1776.
doi: 10.1111/gcb.12822 |
[15] |
FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269-3340.
doi: 10.5194/essd-12-3269-2020 |
[16] |
LE QUÉRÉ C, ANDREW R M, FRIEDLINGSTEIN P, et al. Global carbon budget 2017[J]. Earth System Science Data, 2018, 10(1): 405-448.
doi: 10.5194/essd-10-405-2018 |
[17] |
HOUGHTON R A. Balancing the global carbon budget[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 313-347.
doi: 10.1146/annurev.earth.35.031306.140057 |
[18] |
BONAN G B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882): 1444-1449.
doi: 10.1126/science.1155121 |
[19] | HOUGHTON R A. Historic role of forests in the global carbon cycle[M]// KOHLMAIERG H, WEBERM, HOUGHTONR A. Carbon Dioxide Mitigation in Forestry and Wood Industry. Berlin: Springer, 1998: 1-24. |
[20] |
LUYSSAERT S, INGLIMA I, JUNG M, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database[J]. Global Change Biology, 2007, 13(12): 2509-2537.
doi: 10.1111/j.1365-2486.2007.01439.x |
[21] |
HOUGHTON R A, NASSIKAS A A. Global and regional fluxes of carbon from land use and land cover change 1850—2015[J]. Global Biogeochemical Cycles, 2017, 31(3): 456-472.
doi: 10.1002/2016GB005546 |
[22] |
GOWARD S N, MASEK J G, COHEN W, et al. Forest disturbance and North American carbon flux[J]. Eos, Transactions American Geophysical Union, 2008, 89(11): 105-106.
doi: 10.1029/2008EO110001 |
[23] |
IGBP Terrestrial Carbon Working Group, STEFFEN W, NOBLE I, et al. The terrestrial carbon cycle: implications for the Kyoto protocol[J]. Science, 1998, 280(5368): 1393-1394.
doi: 10.1126/science.280.5368.1393 |
[24] | SKOG K E. Sequestration of carbon in harvested wood products for the United States[J]. Forest Products Journal, 2008, 58(6): 56-72. |
[25] |
ZENG Ning. Carbon sequestration via wood burial[J]. Carbon Balance and Management, 2008, 3(1): 1.
doi: 10.1186/1750-0680-3-1 |
[26] |
CANADELL J G, RAUPACH M R. Managing forests for climate change mitigation[J]. Science, 2008, 320(5882): 1456-1457.
doi: 10.1126/science.1155458 |
[27] |
GOLDEN D, SMITH M A, COLOMBO S. Forest carbon management and carbon trading: a review of Canadian forest options for climate change mitigation[J]. The Forestry Chronicle, 2011, 87(5): 625-635.
doi: 10.5558/tfc2011-069 |
[28] |
SCHULZE E D, VALENTINI R, SANZ M J. The long way from Kyoto to Marrakesh: implications of the Kyoto Protocol negotiations for global ecology[J]. Global Change Biology, 2002, 8(6): 505-518.
doi: 10.1046/j.1365-2486.2002.00523.x |
[29] |
BIRDSEY R, PREGITZER K, LUCIER A. Forest carbon management in the United States[J]. Journal of Environmental Quality, 2006, 35(4): 1461-1469.
doi: 10.2134/jeq2005.0162 |
[30] |
LAMB R L, HURTT G C, BOUDREAU T J, et al. Context and future directions for integrating forest carbon into sub-national climate mitigation planning in the RGGI region of the U.S.[J]. Environmental Research Letters, 2021, 16(6): 063001.
doi: 10.1088/1748-9326/abe6c2 |
[31] |
BASTOS A, FRIEDLINGSTEIN P, SITCH S, et al. Impact of the 2015/2016 El Niño on the terrestrial carbon cycle constrained by bottom-up and top-down approaches[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373(1760): 20170304.
doi: 10.1098/rstb.2017.0304 |
[32] |
SCHIMEL D S, HOUSE J I, HIBBARD K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature, 2001, 414(6860): 169-172.
doi: 10.1038/35102500 |
[33] |
HAYES D J, TURNER D P, STINSON G, et al. Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions, and a new approach for estimating net ecosystem exchange from inventory-based data[J]. Global Change Biology, 2012, 18(4): 1282-1299.
doi: 10.1111/j.1365-2486.2011.02627.x |
[34] |
GURNEY K R, LAW R M, DENNING A S, et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models[J]. Nature, 2002, 415(6872): 626-630.
doi: 10.1038/415626a |
[35] |
STEPHENS B B, GURNEY K R, TANS P P, et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2[J]. Science, 2007, 316(5832): 1732-1735.
doi: 10.1126/science.1137004 |
[36] |
FAN S, GLOOR M, MAHLMAN J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J]. Science, 1998, 282(5388): 442-446.
doi: 10.1126/science.282.5388.442 |
[37] |
PACALA S W, HURTT G C, BAKER D, et al. Consistent land- and atmosphere-based U.S. carbon sink estimates[J]. Science, 2001, 292(5525): 2316-2320.
doi: 10.1126/science.1057320 |
[38] |
GURNEY K R, LAW R M, DENNING A S, et al. TransCom 3 CO2 inversion intercomparison: 1. annual mean control results and sensitivity to transport and prior flux information[J]. Tellus B: Chemical and Physical Meteorology, 2003, 55(2): 555-579.
doi: 10.3402/tellusb.v55i2.16728 |
[39] |
HUNTZINGER D N, POST W M, WEI Y, et al. North American Carbon Program (NACP) regional interim synthesis: terrestrial biospheric model intercomparison[J]. Ecological Modelling, 2012, 232: 144-157.
doi: 10.1016/j.ecolmodel.2012.02.004 |
[40] |
CHEN J M, LIU J, CIHLAR J, et al. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J]. Ecological Modelling, 1999, 124(2-3): 99-119.
doi: 10.1016/S0304-3800(99)00156-8 |
[41] |
VAN DER WERF G R, RANDERSON J T, COLLATZ G J, et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period[J]. Science, 2004, 303(5654): 73-76.
doi: 10.1126/science.1090753 |
[42] | VAN DER WERF G R, RANDERSON J T, GIGLIO L, et al. Interannual variability in global biomass burning emissions from 1997 to 2004[J]. Atmospheric Chemistry and Physics, 2006, 6(11): 3423-3441. |
[43] |
RANDERSON J T, THOMPSON M V, CONWAY T J, et al. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide[J]. Global Biogeochemical Cycles, 1997, 11(4): 535-560.
doi: 10.1029/97GB02268 |
[44] | JAIN A K, YANG Xiaojuan. Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change[J]. Global Biogeochemical Cycles, 2005, 19(2): GB2015. |
[45] |
FOLEY J A, PRENTICE I C, RAMANKUTTY N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics[J]. Global Biogeochemical Cycles, 1996, 10(4): 603-628.
doi: 10.1029/96GB02692 |
[46] |
THORNTON P E, DONEY S C, LINDSAY K, et al. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model[J]. Biogeosciences, 2009, 6(10): 2099-2120.
doi: 10.5194/bg-6-2099-2009 |
[47] |
TIAN Hanqin, CHEN Guangsheng, LIU Mingliang, et al. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895—2007[J]. Forest Ecology and Management, 2010, 259(7): 1311-1327.
doi: 10.1016/j.foreco.2009.10.009 |
[48] |
SITCH S, SMITH B, PRENTICE I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 2003, 9(2): 161-185.
doi: 10.1046/j.1365-2486.2003.00569.x |
[49] | KRINNER G, VIOVY N, DE NOBLET-DUCOUDRÉN, et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1015. |
[50] | BAKER I T, PRIHODKO L, DENNING A S, et al. Seasonal drought stress in the Amazon: reconciling models and observations[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G1): G00B01. |
[51] |
RAICH J W, RASTETTER E B, MELILLO J M, et al. Potential net primary productivity in South America: application of a global model[J]. Ecological Applications, 1991, 1(4): 399-429.
doi: 10.2307/1941899 |
[52] | LIU Shuguang, BOND-LAMBERTY B, HICKE J A, et al. Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges[J]. Journal of Geophysical Research: Biogeosciences, 2011, 116(G4): G00K08. |
[53] |
JU Weimin, CHEN J M, BLACK T A, et al. Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest[J]. Agricultural and Forest Meteorology, 2006, 140(1-4): 136-151.
doi: 10.1016/j.agrformet.2006.08.008 |
[54] |
BOND-LAMBERTY B, GOWER S T, AHL D E, et al. Reimplementation of the Biome-BGC model to simulate successional change[J]. Tree Physiology, 2005, 25(4): 413-424.
doi: 10.1093/treephys/25.4.413 |
[55] |
KUCHARIK C J, FOLEY J A, DELIRE C, et al. Testing the performance of a dynamic global ecosystem model: water balance, carbon balance, and vegetation structure[J]. Global Biogeochemical Cycles, 2000, 14(3): 795-825.
doi: 10.1029/1999GB001138 |
[56] | PARTON W J, OJIMA D S, COLE C V, et al. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management[M]// BRYANTR B, ARNOLDR W. Quantitative Modeling of Soil Forming Processes.Soil Science Society of America, 1994, 39: 147-167. |
[57] |
RANDERSON J T, HOFFMAN F M, THORNTON P E, et al. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models[J]. Global Change Biology, 2009, 15(10): 2462-2484.
doi: 10.1111/j.1365-2486.2009.01912.x |
[58] |
LI Changsheng, FROLKING S, CROCKER G J, et al. Simulating trends in soil organic carbon in long-term experiments using the DNDC model[J]. Geoderma, 1997, 81(1-2): 45-60.
doi: 10.1016/S0016-7061(97)00080-3 |
[59] |
HURTT G C, MOORCROFT P R, AND S W P, et al. Terrestrial models and global change: challenges for the future[J]. Global Change Biology, 1998, 4(5): 581-590.
doi: 10.1046/j.1365-2486.1998.t01-1-00203.x |
[60] |
MOORCROFT P R, HURTT G C, PACALA S W. A method for scaling vegetation dynamics: the ecosystem demography model[J]. Ecological Monographs, 2001, 71(4): 557-586.
doi: 10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2 |
[61] | LIU Shuguang, BLISS N, SUNDQUIST E, et al. Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition[J]. Global Biogeochemical Cycles, 2003, 17(2): 1074. |
[62] |
KEANE R E, RYAN K C, RUNNING S W. Simulating effects of fire on northern Rocky Mountain landscapes with the ecological process model FIRE-BGC[J]. Tree Physiology, 1996, 16(3): 319-331.
doi: 10.1093/treephys/16.3.319 |
[63] | BUGMANN H. On the ecology of mountainous forests in a changing climate: a simulation study[D]. Zurich: ETH Zurich, 1994. |
[64] |
RUNNING S W, GOWER S T. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets[J]. Tree Physiology, 1991, 9(1-2): 147-160.
doi: 10.1093/treephys/9.1-2.147 |
[65] | DIXON G E. Essential FVS: A user’s guide to the forest vegetation simulator[R]. Fort Collins, CO: US Department of Agriculture, Forest Service, Forest Management Service Center, 2002. |
[66] |
FRIEND A D, STEVENS A K, KNOX R G, et al. A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0)[J]. Ecological Modelling, 1997, 95(2-3): 249-287.
doi: 10.1016/S0304-3800(96)00034-8 |
[67] |
CHEN Wenjun, CHEN Jing, CIHLAR J. An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry[J]. Ecological Modelling, 2000, 135(1): 55-79.
doi: 10.1016/S0304-3800(00)00371-9 |
[68] |
MLADENOFF D J. LANDIS and forest landscape models[J]. Ecological Modelling, 2004, 180(1): 7-19.
doi: 10.1016/j.ecolmodel.2004.03.016 |
[69] |
PASTOR J, POST W M. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles[J]. Biogeochemistry, 1986, 2(1): 3-27.
doi: 10.1007/BF02186962 |
[70] |
BONDEAU A, SMITH P C, ZAEHLE S, et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance[J]. Global Change Biology, 2007, 13(3): 679-706.
doi: 10.1111/j.1365-2486.2006.01305.x |
[71] |
PACALA S W, CANHAM C D, SAPONARA J, et al. Forest models defined by field measurements: estimation, error analysis and dynamics[J]. Ecological Monographs, 1996, 66(1): 1-43.
doi: 10.2307/2963479 |
[72] |
MCGUIRE A D, MELILLO J M, JOYCE L A, et al. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America[J]. Global Biogeochemical Cycles, 1992, 6(2): 101-124.
doi: 10.1029/92GB00219 |
[73] | PAN Y, CHEN J M, BIRDSEY R, et al. Age structure and disturbance legacy of North American forests[J]. Biogeosciences Discussions, 2010, 7(1): 979-1020. |
[74] |
NORBY R J, OGLE K, CURTIS P S, et al. Aboveground growth and competition in forest gap models: an analysis for studies of climatic change[J]. Climatic Change, 2001, 51(3): 415-447.
doi: 10.1023/A:1012510619424 |
[75] |
LAW B E, TURNER D, CAMPBELL J, et al. Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA[J]. Global Change Biology, 2004, 10(9): 1429-1444.
doi: 10.1111/j.1365-2486.2004.00822.x |
[76] |
WANG Weile, ICHII K, HASHIMOTO H, et al. A hierarchical analysis of terrestrial ecosystem model Biome-BGC: equilibrium analysis and model calibration[J]. Ecological Modelling, 2009, 220(17): 2009-2023.
doi: 10.1016/j.ecolmodel.2009.04.051 |
[77] |
BUGMANN H. A review of forest gap models[J]. Climatic Change, 2001, 51(3-4): 259-305.
doi: 10.1023/A:1012525626267 |
[78] |
WULLSCHLEGER S D, JACKSON R B, CURRIE W S, et al. Below-ground processes in gap models for simulating forest response to global change[J]. Climatic Change, 2001, 51(3-4): 449-473.
doi: 10.1023/A:1012570821241 |
[79] | HURTT G C, PACALA S W, MOORCROFT P R, et al. Projecting the future of the U.S. carbon sink[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(3): 1389-1394. |
[80] |
CROOKSTON N L, REHFELDT G E, DIXON G E, et al. Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics[J]. Forest Ecology and Management, 2010, 260(7): 1198-1211.
doi: 10.1016/j.foreco.2010.07.013 |
[81] |
HOUGHTON R A. Land-use change and the carbon cycle[J]. Global Change Biology, 1995, 1(4): 275-287.
doi: 10.1111/j.1365-2486.1995.tb00026.x |
[82] |
HOUGHTON R A. How well do we know the flux of CO2 from land-use change?[J]. Tellus B: Chemical and Physical Meteorology, 2010, 62(5): 337-351.
doi: 10.1111/j.1600-0889.2010.00473.x |
[83] |
HOUGHTON R A, HOBBIE J E, MELILLO J M, et al. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere[J]. Ecological Monographs, 1983, 53(3): 235-262.
doi: 10.2307/1942531 |
[84] |
HOUGHTON R A. The annual net flux of carbon to the atmosphere from changes in land use 1850—1990[J]. Tellus B: Chemical and Physical Meteorology, 1999, 51(2): 298-313.
doi: 10.3402/tellusb.v51i2.16288 |
[85] | HOUGHTON R A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850—2000[J]. Tellus B: Chemical and Physical Meteorology, 2003, 55(2): 378-390. |
[86] |
HOUGHTON R A, HACKLER J L, LAWRENCE K T. The U.S. carbon budget: contributions from land-use change[J]. Science, 1999, 285(5427): 574-578.
doi: 10.1126/science.285.5427.574 |
[87] | HOUGHTON R A, HACKLER J L. Sources and sinks of carbon from land-use change in China[J]. Global Biogeochemical Cycles, 2003, 17(2): 1034. |
[88] |
HOUGHTON R A, SKOLE D L, NOBRE C A, et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J]. Nature, 2000, 403(6767): 301-304.
doi: 10.1038/35002062 |
[89] |
HARRIS N L, BROWN S, HAGEN S C, et al. Baseline map of carbon emissions from deforestation in tropical regions[J]. Science, 2012, 336(6088): 1573-1576.
doi: 10.1126/science.1217962 |
[90] |
ANDERSEN L E, DOYLE A S, GRANADO S D, et al. Net carbon emissions from deforestation in Bolivia during 1990—2000 and 2000—2010: Results from a Carbon Bookkeeping Model[J]. PLoS One, 2016, 11(3): e0151241.
doi: 10.1371/journal.pone.0151241 |
[91] |
BACCINI A, GOETZ S J, WALKER W S, et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps[J]. Nature Climate Change, 2012, 2(3): 182-185.
doi: 10.1038/nclimate1354 |
[92] | ACHARD F, EVA H D, MAYAUX P, et al. Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s[J]. Global Biogeochemical Cycles, 2004, 18(2): GB2008. |
[93] |
HANSIS E, DAVIS S J, PONGRATZ J. Relevance of methodological choices for accounting of land use change carbon fluxes[J]. Global Biogeochemical Cycles, 2015, 29(8): 1230-1246.
doi: 10.1002/2014GB004997 |
[94] |
GASSER T, CIAIS P. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of “emissions from land-use change”[J]. Earth System Dynamics, 2013, 4(1): 171-186.
doi: 10.5194/esd-4-171-2013 |
[95] |
REICK C, RADDATZ T, PONGRATZ J, et al. Contribution of anthropogenic land cover change emissions to pre-industrial atmospheric CO2[J]. Tellus B: Chemical and Physical Meteorology, 2010, 62(5): 329-336.
doi: 10.1111/j.1600-0889.2010.00479.x |
[96] | SHEVLIAKOVA E, STOUFFER R J, MALYSHEV S, et al. Historical warming reduced due to enhanced land carbon uptake[C]//Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16730-16735. |
[97] |
STOCKER B D, FEISSLI F, STRASSMANN K M, et al. Past and future carbon fluxes from land use change, shifting cultivation and wood harvest[J]. Tellus B: Chemical and Physical Meteorology, 2014, 66(1): 23188.
doi: 10.3402/tellusb.v66.23188 |
[98] |
WILKENSKJELD S, KLOSTER S, PONGRATZ J, et al. Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM[J]. Biogeosciences, 2014, 11(17): 4817-4828.
doi: 10.5194/bg-11-4817-2014 |
[99] |
TANG Xiaojing, HUTYRA L R, ARÉVALO P, et al. Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: a spatially explicit carbon bookkeeping model[J]. Science of the Total Environment, 2020, 720: 137409.
doi: 10.1016/j.scitotenv.2020.137409 |
[100] |
TANG Xiaojing, WOODCOCK C E, OLOFSSON P, et al. Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin[J]. Remote Sensing of Environment, 2021, 256: 112336.
doi: 10.1016/j.rse.2021.112336 |
[101] |
GILLIS M D, OMULE A Y, BRIERLEY T. Monitoring Canada’s forests: the national forest inventory[J]. The Forestry Chronicle, 2005, 81(2): 214-221.
doi: 10.5558/tfc81214-2 |
[102] | NELSON M, MOISEN G, FINCO M, et al. Forest inventory and analysis in the United States: remote sensing and geospatial activities[J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(7): 729-732. |
[103] | SMITH W B. Forest inventory and analysis: a national inventory and monitoring program[J]. Environmental Pollution, 2002, 116(S1): S233-S242. |
[104] |
JENKINS J C, BIRDSEY R A, PAN Yude. Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data[J]. Ecological Applications, 2001, 11(4): 1174-1193.
doi: 10.1890/1051-0761(2001)011[1174:BANEFT]2.0.CO;2 |
[105] | JENKINS J C, CHOJNACKY D C, HEATH L S, et al. National scale biomass estimators for United States tree species[J]. Forest Science, 2003, 49(1): 12-35. |
[106] | BIRDSEY R A. Carbon storage and accumulation in United States forest ecosystems[R]. Washington, DC: U.S. Department of Agriculture, Forest Service, 1992. |
[107] | BIRDSEY R A, HEATH L S. Carbon changes in U.S. forests[M]// JOYCEL A. Productivity of America’s Forests and Climate Change. Fort Collins, Colorado: USDA, Forest Service: 1995: 56-70. |
[108] |
TURNER D P, KOERPER G J, HARMON M E, et al. A carbon budget for forests of the conterminous United States[J]. Ecological Applications, 1995, 5(2): 421-436.
doi: 10.2307/1942033 |
[109] | HEATH L S, SMITH J E, SKOG K E, et al. Managed forest carbon estimates for the US greenhouse gas inventory, 1990-2008[J]. Journal of Forestry, 2011, 109(3): 167-173. |
[110] | SMITH J E, HEATH L S, SKOG K E, et al. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States[R]. Newtown Square, PA: USDA, Forest Service, 2006. |
[111] |
STINSON G, KURZ W A, SMYTH C E, et al. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008[J]. Global Change Biology, 2011, 17(6): 2227-2244.
doi: 10.1111/j.1365-2486.2010.02369.x |
[112] |
SHVIDENKO A, NILSSON S. Dynamics of Russian forests and the carbon budget in 1961—1998: An assessment based on long-term forest inventory data[J]. Climatic Change, 2002, 55(1-2): 5-37.
doi: 10.1023/A:1020243304744 |
[113] |
JANSSENS I A, FREIBAUER A, CIAIS P, et al. Europe’s terrestrial biosphere absorbs 7% to 12% of European anthropogenic CO2 emissions[J]. Science, 2003, 300(5625): 1538-1542.
doi: 10.1126/science.1083592 |
[114] |
NABUURS G J, SCHELHAAS M J, MOHREN G F M J, et al. Temporal evolution of the European forest sector carbon sink from 1950 to 1999[J]. Global Change Biology, 2003, 9(2): 152-160.
doi: 10.1046/j.1365-2486.2003.00570.x |
[115] | BIRDSEY R. Data gaps for monitoring forest carbon in the United States: an inventory perspective[J]. Environmental Management, 2004, 33(1): S1-S8. |
[116] |
ŤUPEK B, ZANCHI G, VERKERK P J. et al. A comparison of alternative modelling approaches to evaluate the European forest carbon fluxes[J]. Forest Ecology and Management, 2010, 260(3): 241-251.
doi: 10.1016/j.foreco.2010.01.045 |
[117] | WOODALL C W, COULSTON J W, DOMKE G M, et al. The U.S. forest carbon accounting framework: stocks and stock change, 1990—2016[R]. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, 2015. |
[118] |
KURZ W A, DYMOND C C, WHITE T M, et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards[J]. Ecological Modelling, 2009, 220(4): 480-504.
doi: 10.1016/j.ecolmodel.2008.10.018 |
[119] |
RICHARDS G P, EVANS D M W. Development of a carbon accounting model (FullCAM Vers. 1. 0) for the Australian continent[J]. Australian Forestry, 2004, 67(4): 277-283.
doi: 10.1080/00049158.2004.10674947 |
[120] |
PETRESCU A M R, PETERS G P, JANSSENS-MAENHOUT G, et al. European anthropogenic AFOLU greenhouse gas emissions: a review and benchmark data[J]. Earth System Science Data, 2020, 12(2): 961-1001.
doi: 10.5194/essd-12-961-2020 |
[121] | UMEMIYA C, WHITE M, AMELLINA A, et al. National greenhouse gas inventory capacity: an assessment of Asian developing countries[J]. Environmental Science & Policy, 2017, 78: 66-73. |
[122] |
XIAO Jingfeng, CHEVALLIER F, GOMEZ C, et al. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years[J]. Remote Sensing of Environment, 2019, 233: 111383.
doi: 10.1016/j.rse.2019.111383 |
[123] |
HILKER T, COOPS N C, WULDER M A, et al. The use of remote sensing in light use efficiency based models of gross primary production: a review of current status and future requirements[J]. Science of the Total Environment, 2008, 404(2-3): 411-423.
doi: 10.1016/j.scitotenv.2007.11.007 |
[124] |
LADONI M, BAHRAMI H A, ALAVIPANAH S K, et al. Estimating soil organic carbon from soil reflectance: a review[J]. Precision Agriculture, 2010, 11(1): 82-99.
doi: 10.1007/s11119-009-9123-3 |
[125] |
GOETZ S, DUBAYAH R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change[J]. Carbon Management, 2011, 2(3): 231-244.
doi: 10.4155/cmt.11.18 |
[126] |
RYU Y, BERRY J A, BALDOCCHI D D. What is global photosynthesis? History, uncertainties and opportunities[J]. Remote Sensing of Environment, 2019, 223: 95-114.
doi: 10.1016/j.rse.2019.01.016 |
[127] |
GONG Weishu, HUANG Chengquan, HOUGHTON R A, et al. Carbon fluxes from contemporary forest disturbances in North Carolina evaluated using a grid-based carbon accounting model and fine resolution remote sensing products[J]. Science of Remote Sensing, 2022, 5: 100042.
doi: 10.1016/j.srs.2022.100042 |
[128] |
WULDER M A, LOVELAND T R, ROY D P, et al. Current status of Landsat program, science, and applications[J]. Remote Sensing of Environment, 2019, 225: 127-147.
doi: 10.1016/j.rse.2019.02.015 |
[129] |
LOVELAND T R, DWYER J L. Landsat: bilding a strong future[J]. Remote Sensing of Environment, 2012, 122: 22-29.
doi: 10.1016/j.rse.2011.09.022 |
[130] |
DABBOOR M, OLTHOF I, MAHDIANPARI M, et al. The RADARSAT constellation mission core applications: first results[J]. Remote Sensing, 2022, 14(2): 301.
doi: 10.3390/rs14020301 |
[131] |
ROSENQVIST A, SHIMADA M, SUZUKI S, et al. Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2[J]. Remote Sensing of Environment, 2014, 155: 3-12.
doi: 10.1016/j.rse.2014.04.011 |
[132] | WOODCOCK C E, ALLEN R, ANDERSON M, et al. Free access to landsat imagery[J]. Science, 2008, 320(5879): 1011. |
[133] |
DRUSCH M, DEL BELLO U, CARLIER S, et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120: 25-36.
doi: 10.1016/j.rse.2011.11.026 |
[134] |
POTIN P, ROSICH B, MIRANDA N, et al. Sentinel-1 mission status[J]. Procedia Computer Science, 2016, 100: 1297-1304.
doi: 10.1016/j.procs.2016.09.245 |
[135] |
NEUENSCHWANDER A, PITTS K. The ATL08 land and vegetation product for the ICESat-2 Mission[J]. Remote Sensing of Environment, 2019, 221: 247-259.
doi: 10.1016/j.rse.2018.11.005 |
[136] |
DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography[J]. Science of Remote Sensing, 2020, 1: 100002.
doi: 10.1016/j.srs.2020.100002 |
[137] |
HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Global Change Biology, 2005, 11(6): 945-958.
doi: 10.1111/j.1365-2486.2005.00955.x |
[138] | HOUGHTON R A, HALL F, GOETZ S J. Importance of biomass in the global carbon cycle[J]. Journal of Geophysical Research: Biogeosciences, 2009, 114(G2): G00E03. |
[139] | DUBAYAH R O, DRAKE J B. Lidar remote sensing for forestry[J]. Journal of Forestry, 2000, 98(6): 44-46. |
[140] |
LEFSKY M A, COHEN W B, ACKER S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests[J]. Remote Sensing of Environment, 1999, 70(3): 339-361.
doi: 10.1016/S0034-4257(99)00052-8 |
[141] |
LEFSKY M A, COHEN W B, HARDING D J, et al. Lidar remote sensing of above-ground biomass in three biomes[J]. Global Ecology and Biogeography, 2002, 11(5): 393-399.
doi: 10.1046/j.1466-822x.2002.00303.x |
[142] |
NELSON R, MARGOLIS H, MONTESANO P, et al. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations[J]. Remote Sensing of Environment, 2017, 188: 127-140.
doi: 10.1016/j.rse.2016.10.038 |
[143] |
PANG Yong, WANG Weiwei, DU Liming, et al. Nyström-based spectral clustering using airborne LiDAR point cloud data for individual tree segmentation[J]. International Journal of Digital Earth, 2021, 14(10): 1452-1476.
doi: 10.1080/17538947.2021.1943018 |
[144] |
WANG Qiang, PANG Yong, CHEN Dongsheng, et al. Lidar biomass index: a novel solution for tree-level biomass estimation using 3D crown information[J]. Forest Ecology and Management, 2021, 499: 119542.
doi: 10.1016/j.foreco.2021.119542 |
[145] |
PANG Yong, LI Zengyuan. Inversion of biomass components of the temperate forest using airborne Lidar technology in Xiaoxing’an Mountains, Northeastern of China[J]. Chinese Journal of Plant Ecology, 2012, 36(10): 1095-1105.
doi: 10.3724/SP.J.1258.2012.01095 |
[146] | PANG Yong, LI Zengyuan, MENG Shili, et al. China typical forest aboveground biomass estimation by fusion of multi-platform data[C]//Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing: IEEE, 2016: 3557-3560. |
[147] |
PANG Yong, LI Zengyuan. Subtropical forest biomass estimation using airborne LiDAR and Hyperspectral data[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B8: 747-749.
doi: 10.5194/isprs-archives-XLI-B8-747-2016 |
[148] |
RIGNOT E, WAY J B, MCDONALD K, et al. Monitoring of environmental conditions in Taiga forests using ERS-1 SAR[J]. Remote Sensing of Environment, 1994, 49(2): 145-154.
doi: 10.1016/0034-4257(94)90051-5 |
[149] |
NEEFF T, DE ALENCASTRO GRAÇA P M, DUTRA L V, et al. Carbon budget estimation in Central Amazonia: Successional forest modeling from remote sensing data[J]. Remote Sensing of Environment, 2005, 94(4): 508-522.
doi: 10.1016/j.rse.2004.12.002 |
[150] |
RAUSTE Y. Multi-temporal JERS SAR data in boreal forest biomass mapping[J]. Remote Sensing of Environment, 2005, 97(2): 263-275.
doi: 10.1016/j.rse.2005.05.002 |
[151] |
PULLIAINEN J, ENGDAHL M, HALLIKAINEN M. Feasibility of multi-temporal interferometric SAR data for stand-level estimation of boreal forest stem volume[J]. Remote Sensing of Environment, 2003, 85(4): 397-409.
doi: 10.1016/S0034-4257(03)00016-6 |
[152] | PATENAUDE G, MILNE R, DAWSON T P. Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol[J]. Environmental Science & Policy, 2005, 8(2): 161-178. |
[153] |
AUSTIN J M, MACKEY B G, VAN NIEL K P. Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest[J]. Forest Ecology and Management, 2003, 176(1-3): 575-583.
doi: 10.1016/S0378-1127(02)00314-6 |
[154] |
BALZTER H, SKINNER L, LUCKMAN A, et al. Estimation of tree growth in a conifer plantation over 19 years from multi-satellite L-band SAR[J]. Remote Sensing of Environment, 2003, 84(2): 184-191.
doi: 10.1016/S0034-4257(02)00106-2 |
[155] |
SANTOS J R, FREITAS C C, ARAUJO L S, et al. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest[J]. Remote Sensing of Environment, 2003, 87(4): 482-493.
doi: 10.1016/j.rse.2002.12.001 |
[156] | RAUSTE Y. Multi-temporal JERS SAR data in boreal forest biomass mapping[J]. Remote Sensing of Environment, 2005, 97(2): 263-275. |
[157] |
FRANSSON J E S, WALTER F, ULANDER L M H. Estimation of forest parameters using CARABAS-II VHF SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 720-727.
doi: 10.1109/36.842001 |
[158] |
SANTOS J R, FREITAS C C, ARAUJO L S, et al. Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest[J]. Remote Sensing of Environment, 2003, 87(4): 482-493.
doi: 10.1016/j.rse.2002.12.001 |
[159] |
SCHRÖDER R, PULS J, HAJNSEK I, et al. MAPSAR: a small L-band SAR mission for land observation[J]. Acta Astronautica, 2005, 56(1-2): 35-43.
doi: 10.1016/j.actaastro.2004.09.007 |
[160] |
BALZTER H, SKINNER L, LUCKMAN A, et al. Estimation of tree growth in a conifer plantation over 19 years from multi-satellite L-band SAR[J]. Remote Sensing of Environment, 2003, 84(2): 184-191.
doi: 10.1016/S0034-4257(02)00106-2 |
[161] |
CASTEL T, GUERRA F, CARAGLIO Y, et al. Retrieval biomass of a large Venezuelan pine plantation using JERS-1 SAR data. Analysis of forest structure impact on radar signature[J]. Remote Sensing of Environment, 2002, 79(1): 30-41.
doi: 10.1016/S0034-4257(01)00236-X |
[162] |
DONOGHUE D N M, WATT P J. Using LiDAR to compare forest height estimates from IKONOS and Landsat ETM+ data in Sitka spruce plantation forests[J]. International Journal of Remote Sensing, 2006, 27(11): 2161-2175.
doi: 10.1080/01431160500396493 |
[163] |
HYYPPÄ J, HYYPPÄ H, INKINEN M, et al. Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes[J]. Forest Ecology and Management, 2000, 128(1-2): 109-120.
doi: 10.1016/S0378-1127(99)00278-9 |
[164] |
MENG Shili, PANG Yong, ZHANG Zhongjun, et al. Mapping aboveground biomass using texture indices from aerial photos in a temperate forest of northeastern China[J]. Remote Sensing, 2016, 8(3): 230.
doi: 10.3390/rs8030230 |
[165] |
POWELL S L, COHEN W B, HEALEY S P, et al. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: a comparison of empirical modeling approaches[J]. Remote Sensing of Environment, 2010, 114(5): 1053-1068.
doi: 10.1016/j.rse.2009.12.018 |
[166] |
JI Lei, WYLIE B K, NOSSOV D R, et al. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 451-461.
doi: 10.1016/j.jag.2012.03.019 |
[167] |
MATASCI G, HERMOSILLA T, WULDER M A, et al. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots[J]. Remote Sensing of Environment, 2018, 209: 90-106.
doi: 10.1016/j.rse.2017.12.020 |
[168] | KELLNDORFER J, WALKER W, KIRSCH K, et al. NACP aboveground biomass and carbon baseline data, V. 2 (NBCD 2000), U.S.A., 2000[R]. Oak Ridge, Tennessee: ORNL Distributed Active Archive Center, 2013. |
[169] |
BLACKARD J A, FINCO M V, HELMER E H, et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information[J]. Remote Sensing of Environment, 2008, 112(4): 1658-1677.
doi: 10.1016/j.rse.2007.08.021 |
[170] |
WILSON B T, WOODALL C W, GRIFFITH D M. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage[J]. Carbon Balance and Management, 2013, 8(1): 1.
doi: 10.1186/1750-0680-8-1 |
[171] | ZHANG Xiaoyang, KONDRAGUNTA S. Estimating forest biomass in the USA using generalized allometric models and MODIS land products[J]. Geophysical Research Letters, 2006, 33(9): L09402. |
[172] |
CHI Hong, SUN Guoqing, HUANG Jinliang, et al. National forest aboveground biomass mapping from ICESat/GLAS data and MODIS imagery in China[J]. Remote Sensing, 2015, 7(5): 5534-5564.
doi: 10.3390/rs70505534 |
[173] |
SU Yanjun, GUO Qinghua, XUE Baolin, et al. Spatial distribution of forest aboveground biomass in China: estimation through combination of spaceborne lidar, optical imagery, and forest inventory data[J]. Remote Sensing of Environment, 2016, 173: 187-199.
doi: 10.1016/j.rse.2015.12.002 |
[174] |
BACCINI A, LAPORTE N, GOETZ S J, et al. A first map of tropical Africa’s above-ground biomass derived from satellite imagery[J]. Environmental Research Letters, 2008, 3(4): 045011.
doi: 10.1088/1748-9326/3/4/045011 |
[175] | SAATCHI S S, HARRIS N L, BROWN S, et al. Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24): 9899-9904. |
[176] |
HUANG Huabing, LIU Caixia, WANG Xiaoyi, et al. Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China[J]. Remote Sensing of Environment, 2019, 221: 225-234.
doi: 10.1016/j.rse.2018.11.017 |
[177] |
HEALEY S P, YANG Zhiqiang, GORELICK N, et al. Highly local model calibration with a new GEDI LiDAR asset on google earth engine reduces landsat forest height signal saturation[J]. Remote Sensing, 2020, 12(17): 2840.
doi: 10.3390/rs12172840 |
[178] |
DUNCANSON L, KELLNER J R, ARMSTON J, et al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission[J]. Remote Sensing of Environment, 2022, 270: 112845.
doi: 10.1016/j.rse.2021.112845 |
[179] |
SAARELA S, HOLM S, HEALEY S P, et al. Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and landsat data[J]. Remote Sensing, 2018, 10(11): 1832.
doi: 10.3390/rs10111832 |
[180] |
DUNCANSON L, NEUENSCHWANDER A, HANCOCK S, et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California[J]. Remote Sensing of Environment, 2020, 242: 111779.
doi: 10.1016/j.rse.2020.111779 |
[181] |
SILVA C A, DUNCANSON L, HANCOCK S, et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping[J]. Remote Sensing of Environment, 2021, 253: 112234.
doi: 10.1016/j.rse.2020.112234 |
[182] |
ALBINET C, WHITEHURST A S, JEWELL L A, et al. A joint ESA-NASA Multi-mission Algorithm and Analysis Platform (MAAP) for biomass, NISAR, and GEDI[J]. Surveys in Geophysics, 2019, 40(4): 1017-1027.
doi: 10.1007/s10712-019-09541-z |
[183] | LI A, et al. Mapping forest height for Mississippi using long-term landsat observations and GLAS data[EB/OL]. [2022-04-12] https://cce.nasa.gov/meeting_te_2010/abs_and_discussions/te2010_ab_searchab_id108.html |
[184] |
NEIGH C S R, MASEK J G, BOURGET P, et al. Deciphering the precision of stereo IKONOS canopy height models for US forests with G-LiHT airborne LiDAR[J]. Remote Sensing, 2014, 6(3): 1762-1782.
doi: 10.3390/rs6031762 |
[185] |
POTAPOV P, LI Xinyuan, HERNANDEZ-SERNA A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sensing of Environment, 2021, 253: 112165.
doi: 10.1016/j.rse.2020.112165 |
[186] |
RISHMAWI K, HUANG Chengquan, ZHAN Xiwu. Monitoring key forest structure attributes across the conterminous united states by integrating GEDI LiDAR measurements and VIIRS data[J]. Remote Sensing, 2021, 13(3): 442.
doi: 10.3390/rs13030442 |
[187] |
FELDPAUSCH T R, LLOYD J, LEWIS S L, et al. Tree height integrated into pantropical forest biomass estimates[J]. Biogeosciences, 2012, 9(8): 3381-3403.
doi: 10.5194/bg-9-3381-2012 |
[188] |
LI Haikui, ZHAO Pengxiang. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology and Management, 2013, 289: 153-163.
doi: 10.1016/j.foreco.2012.10.002 |
[189] |
HUANG Chengquan, GOWARD S N, MASEK J G, et al. Development of time series stacks of Landsat images for reconstructing forest disturbance history[J]. International Journal of Digital Earth, 2009, 2(3): 195-218.
doi: 10.1080/17538940902801614 |
[190] |
HUANG Chengquan, GOWARD S N, MASEK J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010, 114(1): 183-198.
doi: 10.1016/j.rse.2009.08.017 |
[191] |
HUANG Chengquan, GOWARD S N, SCHLEEWEIS K, et al. Dynamics of national forests assessed using the Landsat record: case studies in eastern United States[J]. Remote Sensing of Environment, 2009, 113(7): 1430-1442.
doi: 10.1016/j.rse.2008.06.016 |
[192] |
THOMAS N E, HUANG Chengquan, GOWARD S N, et al. Validation of North American Forest Disturbance dynamics derived from Landsat time series stacks[J]. Remote Sensing of Environment, 2011, 115(1): 19-32.
doi: 10.1016/j.rse.2010.07.009 |
[193] | GOWARD S N, HUANG C, ZHAO F, et al. NACP NAFD project: forest disturbance history from Landsat, 1986-2010[Z]. Oak Ridge, Tennessee: ORNL DAAC, 2016. |
[194] |
ZHAO Feng, HUANG Chengquan, GOWARD S N, et al. Development of Landsat-based annual US forest disturbance history maps (1986—2010) in support of the North American Carbon Program (NACP)[J]. Remote Sensing of Environment, 2018, 209: 312-326.
doi: 10.1016/j.rse.2018.02.035 |
[195] |
HEALEY S P, COHEN W B, YANG Zhiqiang, et al. Mapping forest change using stacked generalization: an ensemble approach[J]. Remote Sensing of Environment, 2018, 204: 717-728.
doi: 10.1016/j.rse.2017.09.029 |
[196] |
HUANG Chengquan, LING P Y, ZHU Zhiliang. North Carolina’s forest disturbance and timber production assessed using time series Landsat observations[J]. International Journal of Digital Earth, 2015, 8(12): 947-969.
doi: 10.1080/17538947.2015.1034200 |
[197] | HUANG C, SCHLEEWEIS K, THOMAS N, et al. Forest dynamics within and around the Olympic National Park assessed using time series Landsat observations[M]//WANG Y. Remote Sensing of Protected Lands. London: Taylor & Francis, 2011: 71-93. |
[198] | EIDENSHINK J, SCHWIND B, BREWER K, et al. A project for monitoring trends in burn severity[J]. Fire Ecology, 2007, 3(1): 3-21. |
[199] | WILLIAMS D W, BIRDSEY R A. Historical patterns of spruce budworm defoliation and bark beetle outbreaks in North American conifer forests: an atlas and description of digital maps[R]. Newtown Square, PA: USDS, Forest Service, Northeastern Research Station, 2003. |
[200] |
MEDDENS A J H, HICKE J A, FERGUSON C A. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States[J]. Ecological Applications, 2012, 22(7): 1876-1891.
doi: 10.1890/11-1785.1 |
[201] |
ZENG Hongcheng, CHAMBERS J Q, NEGRÓN-JUÁREZ R I, et al. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(19): 7888-7892.
doi: 10.1073/pnas.0808914106 pmid: 19416842 |
[202] |
KENNEDY R E, COHEN W B, SCHROEDER T A. Trajectory-based change detection for automated characterization of forest disturbance dynamics[J]. Remote Sensing of Environment, 2007, 110(3): 370-386.
doi: 10.1016/j.rse.2007.03.010 |
[203] |
KENNEDY R E, YANG Zhiqiang, COHEN W B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. Land Trendr-Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010, 114(12): 2897-2910.
doi: 10.1016/j.rse.2010.07.008 |
[204] |
ZHU Zhe, WOODCOCK C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014, 144: 152-171.
doi: 10.1016/j.rse.2014.01.011 |
[205] |
HERMOSILLA T, WULDER M A, WHITE J C, et al. An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites[J]. Remote Sensing of Environment, 2015, 158: 220-234.
doi: 10.1016/j.rse.2014.11.005 |
[206] |
HERMOSILLA T, WULDER M A, WHITE J C, et al. Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring[J]. International Journal of Digital Earth, 2016, 9(11): 1035-1054.
doi: 10.1080/17538947.2016.1187673 |
[207] |
BROOKS E B, WYNNE R H, THOMAS V A, et al. On-the-fly massively multitemporal change detection using statistical quality control charts and landsat data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3316-3332.
doi: 10.1109/TGRS.2013.2272545 |
[208] |
HUGHES M J, KAYLOR S D, HAYES D J. Patch-based forest change detection from landsat time series[J]. Forests, 2017, 8(5): 166.
doi: 10.3390/f8050166 |
[209] |
VOGELMANN J E, XIAN G, HOMER C, et al. Monitoring gradual ecosystem change using Landsat time series analyses: case studies in selected forest and rangeland ecosystems[J]. Remote Sensing of Environment, 2012, 122: 92-105.
doi: 10.1016/j.rse.2011.06.027 |
[210] |
BROWN J F, TOLLERUD H J, BARBER C P, et al. Lessons learned implementing an operational continuous United States national land change monitoring capability: the Land Change Monitoring, Assessment, and Projection (LCMAP) approach[J]. Remote Sensing of Environment, 2020, 238: 111356.
doi: 10.1016/j.rse.2019.111356 |
[211] |
STEHMAN S V, PENGRA B W, HORTON J A, et al. Validation of the U.S. geological survey’s land change monitoring, assessment and projection collection 1.0 annual land cover products 1985—2017[J]. Remote Sensing of Environment, 2021, 265: 112646.
doi: 10.1016/j.rse.2021.112646 |
[212] | HANSEN M C, DEFRIES R S, TOWNSHEND J R G, et al. Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm[J]. Earth Interactions, 2003, 7(10): 1-15. |
[213] |
SEXTON J O, NOOJIPADY P, ANAND A, et al. A model for the propagation of uncertainty from continuous estimates of tree cover to categorical forest cover and change[J]. Remote Sensing of Environment, 2015, 156: 418-425.
doi: 10.1016/j.rse.2014.08.038 |
[214] |
HIRSCHMUGL M, DEUTSCHER J, SOBE C, et al. Use of SAR and optical time series for tropical forest disturbance mapping[J]. Remote Sensing, 2020, 12(4): 727.
doi: 10.3390/rs12040727 |
[215] |
SHIMIZU K, OTA T, MIZOUE N. Detecting forest changes using dense landsat 8 and Sentinel-1 time series data in tropical seasonal forests[J]. Remote Sensing, 2019, 11(16): 1899.
doi: 10.3390/rs11161899 |
[216] |
REICHE J, DE BRUIN S, HOEKMAN D, et al. A Bayesian approach to combine landsat and ALOS PALSAR time series for near real-time deforestation detection[J]. Remote Sensing, 2015, 7(5): 4973-4996.
doi: 10.3390/rs70504973 |
[217] |
REICHE J, VERBESSELT J, HOEKMAN D, et al. Fusing Landsat and SAR time series to detect deforestation in the tropics[J]. Remote Sensing of Environment, 2015, 156: 276-293.
doi: 10.1016/j.rse.2014.10.001 |
[218] |
SHEN Wenjuan, LI Mingshi, HUANG Chengquan, et al. Mapping annual forest change due to afforestation in Guangdong province of China using active and passive remote sensing data[J]. Remote Sensing, 2019, 11(5): 490.
doi: 10.3390/rs11050490 |
[219] |
SHEN Wenjuan, LI Mingshi, HUANG Chengquan, et al. Annual forest aboveground biomass changes mapped using ICESat/GLAS measurements, historical inventory data, and time-series optical and radar imagery for Guangdong province, China[J]. Agricultural and Forest Meteorology, 2018, 259: 23-38.
doi: 10.1016/j.agrformet.2018.04.005 |
[220] |
SHEN Wenjuan, LI Mingshi, HUANG Chengquan, et al. Quantifying live aboveground biomass and forest disturbance of mountainous natural and plantation forests in Northern Guangdong, China, based on multi-temporal landsat, PALSAR and field plot data[J]. Remote Sensing, 2016, 8(7): 595.
doi: 10.3390/rs8070595 |
[221] |
HAYASHI M, MOTOHKA T, SAWADA Y. Aboveground biomass mapping using ALOS-2/PALSAR-2 time-series images for Borneo’s Forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12): 5167-5177.
doi: 10.1109/JSTARS.2019.2957549 |
[222] |
ZHAO Feng, SUN Rui, ZHONG Liheng, et al. Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning[J]. Remote Sensing of Environment, 2022, 269: 112822.
doi: 10.1016/j.rse.2021.112822 |
[223] |
REICHE J, MULLISSA A, SLAGTER B, et al. Forest disturbance alerts for the Congo Basin using Sentinel-1[J]. Environmental Research Letters, 2021, 16(2): 024005.
doi: 10.1088/1748-9326/abd0a8 |
[224] |
SCHROEDER T A, WULDER M A, HEALEY S P, et al. Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data[J]. Remote Sensing of Environment, 2011, 115(6): 1421-1433.
doi: 10.1016/j.rse.2011.01.022 |
[225] |
ZHAO Feng, HUANG Chengquan, ZHU Zhiliang. Use of vegetation change tracker and support vector machine to map disturbance types in greater yellowstone ecosystems in a 1984—2010 landsat time series[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1650-1654.
doi: 10.1109/LGRS.2015.2418159 |
[226] |
SCHROEDER T A, SCHLEEWEIS K G, MOISEN G G, et al. Testing a Landsat-based approach for mapping disturbance causality in U.S. forests[J]. Remote Sensing of Environment, 2017, 195: 230-243.
doi: 10.1016/j.rse.2017.03.033 |
[227] |
SCHLEEWEIS K G, MOISEN G G, SCHROEDER T A, et al. US national maps attributing forest change: 1986—2010[J]. Forests, 2020, 11(6): 653.
doi: 10.3390/f11060653 |
[228] |
HERMOSILLA T, WULDER M A, WHITE J C, et al. Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics[J]. Remote Sensing of Environment, 2015, 170: 121-132.
doi: 10.1016/j.rse.2015.09.004 |
[229] |
WHITE J C, WULDER M A, HERMOSILLA T, et al. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series[J]. Remote Sensing of Environment, 2017, 194: 303-321.
doi: 10.1016/j.rse.2017.03.035 |
[230] |
SENF C, SEIDL R. Mapping the forest disturbance regimes of Europe[J]. Nature Sustainability, 2021, 4(1): 63-70.
doi: 10.1038/s41893-020-00609-y |
[231] |
CHEN Xuexia, VOGELMANN J E, ROLLINS M, et al. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest[J]. International Journal of Remote Sensing, 2011, 32(23): 7905-7927.
doi: 10.1080/01431161.2010.524678 |
[232] |
SOVEREL N O, PERRAKIS D D B, COOPS N C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada[J]. Remote Sensing of Environment, 2010, 114(9): 1896-1909.
doi: 10.1016/j.rse.2010.03.013 |
[233] |
TAO Xin, HUANG Chengquan, ZHAO Feng, et al. Mapping forest disturbance intensity in North and South Carolina using annual Landsat observations and field inventory data[J]. Remote Sensing of Environment, 2019, 221: 351-362.
doi: 10.1016/j.rse.2018.11.029 |
[234] | SKOG K E, NICHOLSON G A. Carbon cycling through wood products: the role of wood and paper products in carbon sequestration[J]. Forest Products Journal, 1998, 48(7-8): 75-83. |
[235] |
WOODBURY P B, SMITH J E, HEATH L S. Carbon sequestration in the U.S. forest sector from 1990 to 2010[J]. Forest Ecology and Management, 2007, 241(1-3): 14-27.
doi: 10.1016/j.foreco.2006.12.008 |
[236] | JOHNSON T G. United States timber industry—an assessment of timber product output and use, 1996[R]. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2001. |
[237] | ZHU Zhiliang, BERGAMASCHI B, BERNKNOPF R, et al. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios[R]. Reston, VA: US Geological Survey, 2010. |
[238] |
LING P Y, BAIOCCHI G, HUANG Chengquan. Estimating annual influx of carbon to harvested wood products linked to forest management activities using remote sensing[J]. Climatic Change, 2016, 134(1-2): 45-58.
doi: 10.1007/s10584-015-1510-3 |
[239] | ROSEN A, KUMAR R. NASA-ISRO SAR (NISAR) Mission Status[C]//Proceedings of the 2021 IEEE Radar Conference (RadarConf21). Atlanta,USA:IEEE. 2021. |
[240] |
QUEGAN S, LE TOAN T, CHAVE J, et al. The European Space Agency BIOMASS mission: measuring forest above-ground biomass from space[J]. Remote Sensing of Environment, 2019, 227: 44-60.
doi: 10.1016/j.rse.2019.03.032 |
[241] |
LE TOAN T, QUEGAN S, DAVIDSON M W J, et al. The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle[J]. Remote Sensing of Environment, 2011, 115(11): 2850-2860.
doi: 10.1016/j.rse.2011.03.020 |
[242] |
PULLIAINEN J T, KURVONEN L, HALLIKAINEN M T. Multitemporal behavior of L- and C-band SAR observations of boreal forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 927-937.
doi: 10.1109/36.752211 |
[243] |
MAHDIANPARI M, SALEHI B, MOHAMMADIMANESH F, et al. Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 13-31.
doi: 10.1016/j.isprsjprs.2017.05.010 |
[244] |
HUANG Xiaodong, ZINITI B, TORBICK N, et al. Assessment of forest above ground biomass estimation using multi-temporal C-band Sentinel-1 and polarimetric L-band PALSAR-2 data[J]. Remote Sensing, 2018, 10(9): 1424.
doi: 10.3390/rs10091424 |
[245] |
MITCHELL A L, TAPLEY I, MILNE A K, et al. C- and L-band SAR interoperability: filling the gaps in continuous forest cover mapping in Tasmania[J]. Remote Sensing of Environment, 2014, 155: 58-68.
doi: 10.1016/j.rse.2014.02.020 |
[246] |
CHAVE J, RÉJOU-MÉCHAIN M, BÚRQUEZ A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees[J]. Global Change Biology, 2014, 20(10): 3177-3190.
doi: 10.1111/gcb.12629 |
[247] |
HO TONG MINH D, NGO Y N, LÊ T T. Potential of P-Band SAR tomography in forest type classification[J]. Remote Sensing, 2021, 13(4): 696.
doi: 10.3390/rs13040696 |
[248] |
RANSON K J, SUN Guoqing. Northern forest classification using temporal multifrequency and multipolarimetric SAR images[J]. Remote Sensing of Environment, 1994, 47(2): 142-153.
doi: 10.1016/0034-4257(94)90151-1 |
[249] |
WOLTER P T, TOWNSEND P A. Multi-sensor data fusion for estimating forest species composition and abundance in northern Minnesota[J]. Remote Sensing of Environment, 2011, 115(2): 671-691.
doi: 10.1016/j.rse.2010.10.010 |
[250] |
ERINJERY J J, SINGH M, KENT T. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery[J]. Remote Sensing of Environment, 2018, 216: 345-354.
doi: 10.1016/j.rse.2018.07.006 |
[251] |
LIU Yanan, GONG Weishu, HU Xiangyun, et al. Forest type identification with random forest using Sentinel-1A, Sentinel-2A, multi-temporal Landsat-8 and DEM data[J]. Remote Sensing, 2018, 10(6): 946.
doi: 10.3390/rs10060946 |
[252] |
YU Ying, LI Mingzw, FU Yu. Forest type identification by random forest classification combined with SPOT and multitemporal SAR data[J]. Journal of Forestry Research, 2018, 29(5): 1407-1414.
doi: 10.1007/s11676-017-0530-4 |
[253] |
MERONI M, D’ANDRIMONT R, VRIELING A, et al. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2[J]. Remote Sensing of Environment, 2021, 253: 112232.
doi: 10.1016/j.rse.2020.112232 |
[254] |
WANG Hongquan, MAGAGI R, GOÏTA K, et al. Crop phenology retrieval via polarimetric SAR decomposition and random forest algorithm[J]. Remote Sensing of Environment, 2019, 231: 111234.
doi: 10.1016/j.rse.2019.111234 |
[255] |
TRAN A T, NGUYEN K A, LIOU Y A, et al. Classification and observed seasonal phenology of broadleaf deciduous forests in a tropical region by using multitemporal Sentinel-1A and Landsat 8 data[J]. Forests, 2021, 12(2): 235.
doi: 10.3390/f12020235 |
[256] |
FRISON P L, FRUNEAU B, KMIHA S, et al. Potential of Sentinel-1 data for monitoring temperate mixed forest phenology[J]. Remote Sensing, 2018, 10(12): 2049.
doi: 10.3390/rs10122049 |
[257] |
LEFSKY M A, HUDAK A T, COHEN W B, et al. Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest[J]. Remote Sensing of Environment, 2005, 95(4): 532-548.
doi: 10.1016/j.rse.2005.01.010 |
[258] |
SUN G, RANSON K J, KIMES D S, et al. Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data[J]. Remote Sensing of Environment, 2008, 112(1): 107-117.
doi: 10.1016/j.rse.2006.09.036 |
[259] |
TANG H, GANGULY S, ZHANG G, et al. Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States[J]. Biogeosciences, 2016, 13(1): 239-252.
doi: 10.5194/bg-13-239-2016 |
[260] |
ZOLKOS S G, GOETZ S J, DUBAYAH R. A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing[J]. Remote Sensing of Environment, 2013, 128: 289-298.
doi: 10.1016/j.rse.2012.10.017 |
[261] |
PANG Yong, LI Zengyuan, JU Hongbo, et al. LiCHy: The CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system[J]. Remote Sensing, 2016, 8(5): 398.
doi: 10.3390/rs8050398 |
[262] |
LU Jiaming, HUANG Chengquan, TAO Xin, et al. Annual forest disturbance intensity mapped using Landsat time series and field inventory data for the conterminous United States (1986—2015)[J]. Remote Sensing of Environment, 2022, 275: 113003.
doi: 10.1016/j.rse.2022.113003 |
[263] | SHEFFIELD R M, THOMPSON M T. Hurricane Hugo effects on South Carolina’s forest resource[R]. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1992. |
[264] |
CHAMBERS J Q, FISHER J I, ZENG Hongcheng, et al. Hurricane Katrina’s carbon footprint on U.S. gulf coast forests[J]. Science, 2007, 318(5853): 1107.
doi: 10.1126/science.1148913 |
[265] |
HURTT G, ZHAO M, SAHAJPAL R, et al. Beyond MRV: high-resolution forest carbon modeling for climate mitigation planning over Maryland, USA[J]. Environmental Research Letters, 2019, 14(4): 045013.
doi: 10.1088/1748-9326/ab0bbe |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||