Journal of Geodesy and Geoinformation Science ›› 2024, Vol. 7 ›› Issue (4): 19-35.doi: 10.11947/j.JGGS.2024.0403
Previous Articles Next Articles
Hamidreza FARHADI TOLIE1,2(), REN Jinchang1,2(), Md Junayed HASAN1,2, MA Ping1,2, Somasundar KANNAN1, LI Yinhe1,2
Published:
2024-12-25
Online:
2025-01-17
Contact:
REN Jinchang. E-mail: About author:
Hamidreza FARHADI TOLIE. E-mail: h.farhadi-tolie@rgu.ac.uk.
Supported by:
Hamidreza FARHADI TOLIE, REN Jinchang, Md Junayed HASAN, MA Ping, Somasundar KANNAN, LI Yinhe. Effective Marine Monitoring with Multimodal Sensing and Improved Underwater Robotic Perception towards Environmental Protection and Smart Energy Transition[J]. Journal of Geodesy and Geoinformation Science, 2024, 7(4): 19-35.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 3
(a) Illustration of the sonar sensor positioned at 0° horizontally, with the transducer head aligned along the $x$-axis. The expected vertical and horizontal coverage of the transmitted pulse is depicted, along with the scan area (represented by the blue rectangular box) in a hypothetical tank[18]; (b) Raw sonar data from a 102° scan of an empty tank, with a boundary detected at approximately 1.50 meters. The left axis represents intensity values ($I$) ranging from 0 to 255, displayed in a polar coordinate system; (c) Converted polar representation of the raw data in (b), where the tank boundary is clearly visible at 1.50 meters. This format is typically used by the sonar interface software and is commonly employed in AI-driven research for analysing sonar data. All figures are provided for demonstration purposes."
[1] | HOEGH-GULDBERG O, BRUNO J F. The impact of climate change on the world’s marine ecosystems[J]. Science, 2010, 328(5985): 1523-1528. |
[2] | ZHANG Fengwei, TAO Wenxin. Application of a multimodal model optimized by multi-head-attention mechanism in the classification of fishery resource remote sensing data files[C]// Proceedings of the Third International Conference on Advanced Algorithms and Neural Networks (AANN 2023). Qingdao: SPIE, 2023: 549-554. |
[3] | LIU Hengguang, XIA Shaohong, FAN Chaoyan, et al. 3D geo-modeling framework for multisource heterogeneous data fusion based on multimodal deep learning and multipoint statistics: a case study in South China Sea[J/OL]. EGUsphere, 2024: 1-44. https://egusphere.copernicus.org/preprints/2024/egusphere-2024-684/. |
[4] | BARRATT D M, HARCH P G, METER K V. Decompression illness in divers: a review of the literature[J]. The Neurologist, 2002, 8(3): 186-202. |
[5] | RAY J P. Development of underwater robots for under water inspection and cleaning applications[D]. Lappeenranta: LUT University, 2023. |
[6] | TOLIE H F, REN Jinchang, ELYAN E. DICAM: deep inception and channel-wise attention modules for underwater image enhancement[J]. Neurocomputing, 2024, 584: 127585. |
[7] | CAREY N, WERFEL J, NAGPAL R. Fast, accurate, small-scale 3D scene capture using a low-cost depth sensor[C]// Proceedings of 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa, CA: IEEE, 2017: 1268-1276. |
[8] | FERREIRA F, MACHADO D, FERRI G, et al. Underwater optical and acoustic imaging:a time for fusion? A brief overview of the state-of-the-art[C]// Proceedings of OCEANS 2016 MTS/IEEE Monterey. Monterey, CA: IEEE, 2016: 1-6. |
[9] | CHEN Li, LIN Hui, LI Shutao. Depth image enhancement for Kinect using region growing and bilateral filter[C]// Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012). Tsukuba, Japan: IEEE, 2012: 3070-3073. |
[10] | MATSUO K, AOKI Y. Depth image enhancement using local tangent plane approximations[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA: IEEE, 2015: 3574-3583. |
[11] | ZHANG Xin, WU Ruiyuan. Fast depth image denoising and enhancement using a deep convolutional network[C]// Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE, 2016: 2499-2503. DOI: 10.1109/ICASSP.2016.7472127. |
[12] | KIM B, YU S C. Imaging sonar based real-time underwater object detection utilizing AdaBoost method[C]// Proceedings of 2017 IEEE Underwater Technology (UT). Busan, Republic of Korea: IEEE, 2017: 1-5. DOI: 10.1109/UT.2017.7890300. |
[13] | MCKAY J, GERG I, MONGA V, et al. What’s mine is yours: pretrained CNNs for limited training sonar ATR[C]// Proceedings of OCEANS 2017-Anchorage. Anchorage, AK: IEEE, 2017: 1-7. |
[14] | KHAMIS S, FANELLO S, RHEMANN C, et al. StereoNet: guided hierarchical refinement for real-time edge-aware depth prediction[C]// Proceedings of the 15th European Conference on Computer Vision (ECCV). Munich, Germany: Springer, 2018: 573-590. |
[15] | CHANG Jiaren, CHEN Yongsheng. Pyramid stereo matching network[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 5410-5418. |
[16] | TADIC V, ODRY A, KECSKES I, et al. Application of intel realSense cameras for depth image generation in robotics[J]. WSEAS Transactions on Computers, 2019, 18: 107-112. |
[17] | DIGUMARTI S T, CHAURASIA G, TANEJA A, et al. Underwater 3D capture using a low-cost commercial depth camera[C]// Proceedings of 2016 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Placid, NY: IEEE, 2016: 1-9. |
[18] | HWANG J, BOSE N, ROBINSON B, et al. Sonar based delineation of oil plume proxies using an AUV[J]. International Journal of Mechanical Engineering and Robotics Research, 2022, 11(4): 207-214. |
[19] | Blue Robotics. Ping-python[EB/OL]. [2024-11-03]. https://github.com/bluerobotics/ping-python. |
[20] | GIRSHICK R. Fast R-CNN[C]// Proceedings of IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448. |
[21] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 779-788. |
[22] | NEVES G, RUIZ M, FONTINELE J, et al. Rotated object detection with forward-looking sonar in underwater applications[J]. Expert Systems with Applications, 2020, 140: 112870. |
[23] | FANG Zhenyu, REN Jinchang, ZHENG Jiangbin, et al. Dual teacher: improving the reliability of pseudo labels for semi-supervised oriented object detection[J/OL]. IEEE Transactions on Geoscience and Remote Sensing, 2024. https://ieeexplore.ieee.org/document/10804848. |
[24] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 13th European Conference on Computer Vision-ECCV 2014. Zurich, Switzerland: Springer, 2014: 740-755. |
[25] | HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2961-2969. |
[26] | CHEN Zhe, WANG Yue, TIAN Wei, et al. Underwater sonar image segmentation combining pixel-level and region-level information[J]. Computers and Electrical Engineering, 2022, 100: 107853. |
[27] | TOLIE H F, REN Jinchang, HASAN M J, et al. Promptable sonar image segmentation for distance measurement using SAM[C]// Proceedings of 2024 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea). Portorose, Slovenia: IEEE, 2024: 229-233. |
[28] | KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]// Proceedings of IEEE/CVF International Conference on Computer Vision. Paris, France: IEEE, 2023: 4015-4026. |
[29] | TOLIE H F, REN Jinchang, HASAN M J, et al. Enhancing underwater situational awareness: realSense camera integration with deep learning for improved depth perception and distance measurement[C]// Proceedings of Artificial Intelligence for Security and Defence Applications II. Edinburgh, United Kingdom: SPIE, 2024: 34-42. |
[30] |
DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 101-110.
doi: 10.11947/j.JGGS.2019.0211 |
[31] | QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. BASNet: boundary-aware salient object detection[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 7479-7489. |
[32] | KURITA T. Principal component analysis (PCA)[M]// IKEUCHI K. Computer Vision:a Reference Guide. Cham: Springer, 2019: 1-4. |
[33] | YANG Xiaolu, SHEN Xuanjing, LONG Jianwu, et al. An improved median-based Otsu image thresholding algorithm[J]. AASRI Procedia, 2012, 3: 468-473. |
[34] | YANG Lihe, KANG Bingyi, HUANG Zilong, et al. Depth anything: unleashing the power of large-scale unlabeled data[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2024: 10371-10381. |
[35] | MA Ping, REN Jinchang, SUN Genyun, et al. Multiscale superpixelwise prophet model for noise-robust feature extraction in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5508912. |
[36] | HASAN M J, ELYAN E, YAN Yijun, et al. Segmentation framework for heat loss identification in thermal images: empowering Scottish retrofitting and thermographic survey companies[C]// Proceedings of the 13th International Conference on Brain Inspired Cognitive Systems. Kuala Lumpur, Malaysia: Springer, 2023: 220-228. |
[37] | LI Yinhe, REN Jinchang, YAN Yijun, et al. CBANet: an end-to-end cross-band 2-D attention network for hyperspectral change detection in remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5513011. |
[38] | ZHANG Erlei, ZONG He, LI Xinyu, et al. ICSF: integrating inter-modal and cross-modal learning framework for self-supervised heterogeneous change detection[J/OL]. IEEE Transactions on Geoscience and Remote Sensing, 2024. https://ieeexplore.ieee.org/document/10807406. |
[39] | YAN Yijun, REN Jinchang, SUN He, Robert WILLIAMS. Nondestructive quantitative measurement for precision quality control in additive manufacturing using hyperspectral imagery and machine learning[J]. IEEE Transactions on Industrial Informatics, 2024, 20(8): 9963-9975. DOI: 10.1109/TII.2024.3384609. |
[40] | TOLIE H F, FARAJI M R, QI Xiaojun. Blind quality assessment of screen content images via edge histogram descriptor and statistical moments[J]. The Visual Computer, 2024, 40(8): 5341-5356. |
[41] | TOLIE H F, REN Jinchang, CHEN Rongjun, et al. Blind sonar image quality assessment via machine learning: leveraging micro- and macro-scale texture and contour features in the wavelet domain[J]. Engineering Applications of Artificial Intelligence, 2025, 141: 109730. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||