Journal of Geodesy and Geoinformation Science ›› 2024, Vol. 7 ›› Issue (2): 18-36.doi: 10.11947/j.JGGS.2024.0202
Previous Articles Next Articles
CHAN Ting On1,2,3(), XIAO Hang1, XIA Linyuan1,2(), LICHTI Derek D.4, LI Ming Ho1, DU Guoming1,2
Published:
2024-06-25
Online:
2024-09-04
Contact:
XIA Linyuan.E-mail: About author:
CHAN Ting On, PhD, majors in geomatics engineering. E-mail: chantingon@mail.sysu.edu.cn.
Supported by:
CHAN Ting On, XIAO Hang, XIA Linyuan, LICHTI Derek D., LI Ming Ho, DU Guoming. Optimization of the Use of Spherical Targets for Point Cloud Registration Using Monte Carlo Simulation[J]. Journal of Geodesy and Geoinformation Science, 2024, 7(2): 18-36.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 9
Top-down view of the point clouds and the spherical in Site 1 for Dataset 1 (Cases (a), (b), and (c) are registrations with three spherical targets; Cases (d), (e), and (f) are registrations with four spherical targets; Cases (g), (h), and (i) are registrations with five spherical targets)"
Figure 10
Top-down view of the point clouds and the spherical in Site 2 for Dataset 1 (Cases (a), (b), and (c) are registrations with three spherical targets; Cases (d), (e), and (f) are registrations with four spherical targets; Cases (g), (h), and (i) are registrations with five spherical targets)"
Figure 11
Top-down view of the point clouds and the spherical in Site 1 for Dataset 2 (Cases (a), (b), and (c) are registrations with three spherical targets; Cases (d), (e), and (f) are registrations with four spherical targets; Cases (g), (h), and (i) are registrations with five spherical targets)"
Figure 12
Top-down view of the point clouds and the spherical in Site 1 for Dataset 2 (Cases (a), (b), and (c) are registrations with three spherical targets; Cases (d), (e), and (f) are registrations with four spherical targets; Cases (g), (h), and (i) are registrations with five spherical targets)"
Figure 13
Top-down view of the point clouds and the spherical in Site 1 for Dataset 3 (Cases (a), (b), and (c) are registrations with three spherical targets; Cases (d), (e), and (f) are registrations with four spherical targets; Cases (g), (h), and (i) are registrations with five spherical targets)"
Figure 14
Top-down view of the point clouds and the spherical in Site 1 for Dataset 4 (Cases (a), (b), and (c) are registrations with three spherical targets; Cases (d), (e), and (f) are registrations with four spherical targets; Cases (g), (h), and (i) are registrations with five spherical targets)"
[1] | VOSSELMAN G, MAAS H G. Airborne and terrestrial laser scanning[M]. Boca Raton: CRC Press, 2010. |
[2] | WANG Yunbiao, XIAO Jun, LIU Lupeng, et al. Efficient rock mass point cloud registration based on local invariants[J]. Remote Sensing, 2021, 13(8): 1540. DOI: 10.3390/rs13081540. |
[3] | SANCHEZ J, DENIS F, CHECCHIN P, et al. Global registration of 3D LiDAR point clouds based on scene features: application to structured environments[J]. Remote Sensing, 2017, 9(10): 1014. DOI: 10.3390/rs9101014. |
[4] | XIONG Biao, JIANG Weize, LI Dengke, et al. Voxel grid-based fast registration of terrestrial point cloud[J]. Remote Sensing, 2021, 13(10): 1905. DOI: 10.3390/rs13101905. |
[5] | YANG Bisheng, ZANG Yufu. Automated registration of dense terrestrial laser-scanning point clouds using curves[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95: 109-121. DOI: 10.1016/j.isprsjprs.2014.05.012. |
[6] | TAO Wuyong, HUA Xianghong, CHEN Zhiping, et al. Fast and automatic registration of terrestrial point clouds using 2D line features[J]. Remote Sensing, 2020, 12(8): 1283. DOI: 10.3390/rs12081283. |
[7] | ZHANG Wuming, CHEN Yiming, WANG Hongtao, et al. Efficient registration of terrestrial LiDAR scans using a coarse-to-fine strategy for forestry applications[J]. Agricultural and Forest Meteorology, 2016, 225: 8-23. DOI: 10.1016/j.agrformet.2016.05.005. |
[8] | SHAO Jie, ZHANG Wuming, MELLADO N, et al. Automated markerless registration of point clouds from TLS and structured light scanner for heritage documentation[J]. Journal of Cultural Heritage, 2019, 35: 16-24. DOI: 10.1016/j.culher.2018.07.013. |
[9] | BOSCHÉ F. Plane-based registration of construction laser scans with 3D/4D building models[J]. Advanced Engineering Informatics, 2012, 26(1): 90-102. DOI: 10.1016/j.aei.2011.08.009. |
[10] | WUJANZ D, SCHALLER S, GIELSDORF F, et al. Plane-based registration of several thousand laser scans on standard hardware[C]// Proceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Riva del Garda: ISPRS, 2018: 1207-1212. DOI: 10.5194/isprs-archives-XLII-2-1207-2018. |
[11] | CHAN T O, LICHTI D D, BELTON D, et al. Automatic point cloud registration using a single octagonal lamp pole[J]. Photogrammetric Engineering & Remote Sensing, 2016, 82(4): 257-269. DOI: 10.14358/PERS.82.4.257. |
[12] | RABBANI T, DIJKMAN S, VAN DEN HEUVEL F, et al. An integrated approach for modelling and global registration of point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61(6): 355-370. DOI: 10.1016/j.isprsjprs.2006.09.006. |
[13] | MORITANI R, KANAI S, DATE H, et al. Cylinder-based simultaneous registration and model fitting of laser-scanned point clouds for accurate as-built modeling of piping system[J]. Computer-Aided Design & Applications, 2018, 15(5): 720-733. DOI: 10.1080/16864360.2018.1441239. |
[14] | CloudCompare. CloudCompare[CP/OL].[2024-12-11]. https://www.cloudcompare.org/. |
[15] | Trimble. Trimble business center[CP/OL]. [2024-12-11]. https://geospatial.trimble.com/products-and-solutions/trimble-business-center. |
[16] | Leica. Leica cyclone[CP/OL]. [2024-12-11]. https://leica-geosystems.com/products/laser-scanners/software/leica-cyclone. |
[17] | PESCI A, TEZA G. Terrestrial laser scanner and retro‐reflective targets: an experiment for anomalous effects investigation[J]. International Journal of Remote Sensing, 2008, 29(19): 5749-5765. DOI: 10.1080/01431160802108489. |
[18] | TAM G K L, CHENG Z Q, LAI Y K, et al. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(7): 1199-1217. DOI: 10.1109/TVCG.2012.310. |
[19] | FISHMAN G. Monte Carlo: concepts, algorithms, and applications[M]. [S.l.]: Springer Science & Business Media, 2013. |
[20] | LIU Yiqun, YANG Chao, LIU Fangfang, et al. 623 Tflop/s HPCG run on Tianhe-2: leveraging millions of hybrid cores[J]. The International Journal of High Performance Computing Applications, 2016, 30(1): 39-54. DOI: 10.1177/1094342015616266. |
[21] | WANG Yanmin, SHI Hongbin, ZHANG Yanyan, et al. Automatic registration of laser point cloud using precisely located sphere targets[J]. Journal of Applied Remote Sensing, 2014, 8(1): 083588. DOI: 10.1117/1.JRS.8.083588. |
[22] | ZHANG Mengmi. Accurate sphere marker-based registration system of 3D point cloud data in applications of shipbuilding blocks[J]. Journal of Industrial and Intelligent Information, 2015, 3(4): 318-323. DOI: 10.12720/jiii.3.4.318-323. |
[23] | YUN D, KIM S, HEO H, et al. Automated registration of multi-view point clouds using sphere targets[J]. Advanced Engineering Informatics, 2015, 29(4): 930-939. DOI: 10.1016/j.aei.2015.09.008. |
[24] | HUANG Junhui, WANG Zhao, GAO Jianmin, et al. High-precision registration of point clouds based on sphere feature constraints[J]. Sensors, 2017, 17(1): 72. DOI: 10.3390/s17010072. |
[25] | BRETAGNE E, DASSONVALLE P, CARON G. Spherical target-based calibration of terrestrial laser scanner intensity. Application to colour information computation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 14-27. DOI: 10.1016/j.isprsjprs.2018.06.014. |
[26] | BECERIK-GERBER B, JAZIZADEH F, KA-VULYA G, et al. Assessment of target types and layouts in 3D laser scanning for registration accuracy[J]. Automation in Construction, 2011, 20(5): 649-658. DOI: 10.1016/j.autcon.2010.12.008. |
[27] | FRANASZEK M, CHEOK G S, WITZGALL C. Fast automatic registration of range images from 3D imaging systems using sphere targets[J]. Automation in Construction, 2009, 18(3): 265-274. DOI: 10.1016/j.autcon.2008.08.003. |
[28] | GÜMÜŞ K, GÜMÜŞ M G, ERKAYA H. A statistical evaluation of registration methods used in terrestrial laser scanning in cultural heritage applications[J]. Mediterranean Archaeology and Archaeometry, 2017, 17(3): 53-64. DOI: 10.5281/zenodo.1005465. |
[29] | RACHAKONDA P, MURALIKRISHNAN B, COURNOYER L, et al. Methods and considerations to determine sphere center from terrestrial laser scanner point cloud data[J]. Measurement Science and Technology, 2017, 28(10): 105001. DOI: 10.1088/1361-6501/aa8011. |
[30] | MURALIKRISHNAN B, RACHAKONDA P, LEE V, et al. Relative range error evaluation of terrestrial laser scanners using a plate, a sphere, and a novel dual-sphere-plate target[J]. Measurement, 2017, 111: 60-68. DOI: 10.1016/j.measurement.2017.07.027. |
[31] | LENDA G, MARMOL U, BUCZEK M. The effect of partial transparency of spherical targets on TLS point clouds registration accuracy[J]. KSCE Journal of Civil Engineering, 2018, 22(7): 2538-2548. DOI: 10.1007/s12205-017-1907-9. |
[32] | JIA Fengman, LICHTI D D. A model-based design system for terrestrial laser scanning networks in complex sites[J]. Remote Sensing, 2019, 11(15): 1749. DOI: 10.3390/rs11151749. |
[33] | QIN Zheng, YU Hao, WANG Changiian, et al. Geometric transformer for fast and robust point cloud registration[C]// Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA: IEEE, 2022: 11133-11142. DOI: 10.1109/CVPR52688.2022.01086. |
[34] | BAI Xuyang, LUO Zixin, ZHOU Lei, et al. PointDSC: robust point cloud registration using deep spatial consistency[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE, 2021: 15854-15864. DOI: 10.1109/CVPR46437.2021.01560. |
[35] |
KADAM P, ZHANG Min, LIU Shan, et al. R-pointhop: a green, accurate, and unsupervised point cloud registration method[J]. IEEE Transactions on Image Processing, 2022, 31: 2710-2725. DOI: 10.1109/TIP.2022.3160609.
pmid: 35324441 |
[36] | FU Kexue, LIU Shaolei, LUO Xiaoyuan, et al. Robust point cloud registration framework based on deep graph matching[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN: IEEE, 2021: 8889-8898. DOI: 10.1109/CVPR46437.2021.00878. |
[37] | ZHANG Zhiyuan, SUN Jiadai, DAI Yuchao, et al. Self-supervised rigid transformation equivariance for accurate 3D point cloud registration[J]. Pattern Recognition, 2022, 130: 108784. DOI: 10.1016/j.patcog.2022.108784. |
[38] | LICHTI D D. Error modelling, calibration and analysis of an AM-CW terrestrial laser scanner system[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61(5): 307-324. DOI: 10.1016/j.isprsjprs.2006.10.004. |
[39] | CHAN T O, LICHTI D D, BELTON D. A rigorous cylinder-based self-calibration approach for terrestrial laser scanners[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 99: 84-99. DOI: 10.1016/j.isprsjprs.2014.11.003. |
[40] | LICHTI D D. A method to test differences between additional parameter sets with a case study in terrestrial laser scanner self-calibration stability analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2): 169-180. DOI: 10.1016/j.isprsjprs.2007.08.001. |
[41] | BAE K H, LICHTI D D. A method for automated registration of unorganised point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(1): 36-54. DOI: 10.1016/j.isprsjprs.2007.05.012. |
[42] | BESL P J, MCKAY N D. Method for registration of 3-D shapes[C]//Proceedings of the SPIE 1611, Sensor Fusion IV:Control Paradigms and Data Structures. Boston, MA: SPIE, 1992: 586-606. DOI: 10.1117/12.57955. |
[43] | HORN B K P. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A, 1987, 4(4): 629-642. DOI: 10.1364/JOSAA.4.000629. |
[44] | PROKOP M, SHAIKH S A, KIM K S. Low overlapping point cloud registration using line features detection[J]. Remote Sensing, 2019, 12(1): 61. DOI: 10.3390/rs12010061. |
[45] | MOSEGAARD K, SAMBRIDGE M. Monte Carlo analysis of inverse problems[J]. Inverse Problems, 2002, 18(3): R29-R54. DOI: 10.1088/0266-5611/18/3/201. |
[46] | GORTE B, LESPARRE J. Representation and reconstruction of triangular irregular networks with vertical walls[C]// Proceedings of the 7th International Conference on 3D Geoinformation. Quebec, Canada: International Society of Photogrammetry and Remote Sensing, 2012. DOI: 10.5194/isprsarchives-XXXVIII-4-C26-15-2012. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||