[1] |
CHENG Gong, HAN Junwei. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28.
doi: 10.1016/j.isprsjprs.2016.03.014
|
[2] |
DENG Ruizhe, CHEN Qihao, CHEN Qi, et al. A deformable feature pyramid network for ship detection from remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):787-797. DOI: 10.11947/j.AGCS.2020.20190117.
doi: 10.11947/j.AGCS.2020.20190117
|
[3] |
ZHANG Tao, DING Lele, SHI Furong. Urban villages extraction from high-resolution remote sensing imagery based on landscape semantic metrics[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 97-104. DOI: 10.11947/j.AGCS.2021.20190463.
doi: 10.11947/j.AGCS.2021.20190463
|
[4] |
ZHANG Yong. Application of remote sensing and GIS in monitoring and management of illegal construction Xiamen City[J]. Geomatics & Spatial Information Technology, 2016, 39(2): 75-77.
|
[5] |
SUN Changkui, LIU Shanlei, WANG Shengyao, et al. Application of UAV in construction of smart city[J]. Remote Sensing for Land & Resources, 2018, 30(4): 8-12.
|
[6] |
LIU Yang, FU Zhengye, ZHENG Fengbin. Review on high-resolution remote sensing image classification and recognition[J]. Journal of Geo-Information Science, 2015, 17(9): 1080-1091.
|
[7] |
LIN Jingbo, JING Weipeng, SONG Houbing, et al. ESFNet: efficient network for building extraction from high-resolution aerial images[J]. IEEE Access, 2019(7): 54285-54294.
|
[8] |
ZOU Weitao, JING Weipeng, CHEN Guangsheng, et al. A survey of big data analytics for smart forestry[J]. IEEE Access, 2019, 7: 46621-46636.
doi: 10.1109/ACCESS.2019.2907999
|
[9] |
FENG Liying. Research on construction land information extraction from high resolution images with deep learning technology[D]. Hangzhou: Zhejiang University, 2017.
|
[10] |
MA Changhui, HUANG Dengshan. Application of texture features and geometric feature information in high spatial resolution remote sensing image classification[J]. Journal of Geomatics, 2019, 44(6): 66-70, 92.
|
[11] |
HU Lei, ZHENG Jin, GAO Feng. A building extraction method using shadow in high-resolution multispectral images[C]// Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Las Vegas, NV, USA: IEEE, 2011: 1862-1865.
|
[12] |
SHI Wenzao, MAO Zhengyuan. Building extraction from high-resolution remotely sensed imagery based on shadows and graph-cut segmentation[J]. Acta ElectronicaSinica, 2016, 44(12): 2849-2854.
|
[13] |
KONSTANTINIDIS D, STATHAKI T, ARGYRIOU V, et al. Building detection using enhanced HOG-LBP features and region refinement processes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 10(3): 888-905.
doi: 10.1109/JSTARS.4609443
|
[14] |
LÜ Fenghua, SHU Ning, GONG Cun, et al. Regular building extraction from high-resolution image based on multilevel-features[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 656-660.
|
[15] |
CHAUDHURI D, KUSHWAHA N K, SAMAL A, et al. Automatic building detection from high-resolution satellite images based on morphology and internal gray variance[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 9(5): 1767-1779.
doi: 10.1109/JSTARS.2015.2425655
|
[16] |
AWRANGJEB M, ZHANG Chunsun, FRASER C S. Improved building detection using texture information[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, 38: 143-148.
|
[17] |
ZHAO Chuan, ZHANG Baoming, CHEN Xiaowei, et al. A method of extracting building based on LiDAR point clouds[J]. Bulletin of Surveying and Mapping, 2017(2): 35-39.
doi: 10.13474/j.cnki.11-2246.2017.0044
|
[18] |
GUO Haonan, SHI Qian, DU Bo, et al. Scene-driven multitask parallel attention network for building extraction in high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4287-4306.
doi: 10.1109/TGRS.2020.3014312
|
[19] |
LI Zhenshi, ZHANG Xueliang, XIAO Pengfeng, et al. On the effectiveness of weakly supervised semantic segmentation for building extraction from high-resolution remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3266-3281.
doi: 10.1109/JSTARS.2021.3063788
|
[20] |
HU Shu, WANG Shugen, WANG Yue, et al. Building object detection in high-resolution remote sensing image based on mask R-CNN[J/OL]. Journal of Geomatics. [2021-04-01]. https://doi.org/10.14188/j.2095-6045.2020416.
|
[21] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. New York, USA: IEEE, 2015: 1440-1448.
|
[22] |
REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149.
doi: 10.1109/TPAMI.2016.2577031
|
[23] |
HE Kaiming, GKIOXARI G, DOLLAR P, et al. Mask r-cnn[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. New York, USA: IEEE, 2017: 2961-2969.
|
[24] |
SHI Wenxu, BAO Jiahui, YAO Yu. Remote sensing image target detection and identification based on deep learning[J]. Journal of Computer Applications, 2020, 40(12):3558-3562.
doi: 10.11772/j.issn.1001-9081.2020040579
|
[25] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2016: 779-788.
|
[26] |
LIU Wei, ANGUELOY D, ERHAN D, et al. Ssd: single shot multibox detector[C]// Proceedings of 2016 European Conference on Computer Vision. Cham, Switzerland: Springer, 2016: 21-37.
|
[27] |
DONG Biao, XIONG Fengguang, HAN Xie, et al. Research on remote sensing building detection based on improved Yolo-v3 algorithm[J]. Computer Engineering and Applications, 2020, 56(18):209-213.
doi: 10.3778/j.issn.1002-8331.2004-0410
|
[28] |
LI Xiang, SU Juan, YANG Long. A SAR image building detection algorithm based on improved YOLOv3[J]. Acta Armamentarii, 2020, 41(7):1347-1359.
doi: 10.3969/j.issn.1000-1093.2020.07.012
|
[29] |
MA Haojie, LIU Yalan, REN Yuhuan, et al. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3[J]. Remote Sensing, 2020, 12(1): 44.
doi: 10.3390/rs12010044
|
[30] |
LI Qingpeng, WANG Yunhong, LIU Qingjie, et al. Hough transform guided deep feature extraction for dense building detection in remote sensing images[C]// Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York, USA: IEEE, 2018: 1872-1876.
|
[31] |
JIANG Kaiyu, LI Qingpeng. TQR-Net: Tighter quadrangle-based convolutional neural network for dense building instance localization in remote sensing imagery[C]// Proceedings of 2019 International Conference on Image and Graphics. Cham, Switzerland: Springer, 2019: 281-291.
|
[32] |
WANG Kun, LIU Maozhen, YE Zhaojun. An advanced YOLOv3 method for small-scale road object detection[J]. Applied Soft Computing, 2021: 107846.
|
[33] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of 2015 International conference on machine learning. Calgary Canada: PMLR, 2015: 448-456.
|
[34] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778.
|