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Abstract: The semantic segmentation methods based on CNN have made great progress, but there are still some shortcomings in
the application of remote sensing images segmentation, such as the small receptive field can not effectively capture global context.
In order to solve this problem, this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture
long-range dependence, which fuses features through Cross Feature Modulation Module (CFMM ). Experimental results on two
publicly available datasets, Vaihingen and Potsdam, are mloU of 70.27% and 76.63%, respectively. Thus, CFM-UNet can
maintain a high segmentation performance compared with other competitive networks.
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1 Introduction

With the rapid development of satellite and Remote
Sensing(RS) technology, the ability of high-resolution
RS image acquisition has been greatly improved.
And it becomes extremely important to extract the in-
formation of interest from the image accurately. Se-
mantic segmentation has become an important
method for RS images analysis to obtain application-
worthy information, which can provide data support
for precision agriculture, desertification detection,
traffic supervision, urban planning and land resource
management, etc!'.

In recent years, there have been breakthroughs
in deep learning. Convolutional Neural Networks
(CNNs) , which effectively extract high-level abstract
features through nonlinear structures, have been
widely used in the field of image analysis and have
made a great impact. The Fully Convolutional Net-

works ( FCNs)’ s proposal'® has led to further
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breakthroughs in semantic segmentation of RS
images. After FCNs, a large number of semantic seg-
mentation networks with excellent performance have
been proposed one after another, including U-Net'> |
Deeplab V3+'*) | DANet”', UperNet'®. U-Net fuses
the high and low level semantic information to improve
the classification effect of the semantic details of
object boundaries and improves the segmentation
performance of the network. In order to integrate
spatial features, Deeplab V3 + made use of a
decoder based on Deeplab V3, significantly raising
network performance. DANet improves segmentation
performance through both parallel channel attention
and spatial attention. In order to obtain context infor-
mation, PSPNet'”) and its upgraded version of UperNet
adopt pyramid pooling module. However, these
methods further capture global context information
from local features obtained by CNNs, rather than
directly capture global information. Thus, in RS im-

ages with complex backgrounds, it is not easy to ef-
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Fig.1 The whole architecture of CFM-UNet

Recently, with the development of deep learn-
ing, transformer has gained wide attention in the
field of Computer Vision (CV) and opened a new
era in the field of vision''” . Benefit by the excellent
global modeling ability of transformer, swin trans-
former''" has been proposed, showing great potential

in some semantic segmentation tasks. Up to now, the

swin transformer-based methods have achieved great
success in segmentation of medical images' "', In
RS images segmentation, ST-UNet''* is proposed to
improve the RS images segmentation performance by
aggregating CNN features and transformer features.
Although the design of CNNs and transformer com-

bined structures has made significant progress, it is
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still an open issue. In this paper, we introduce cross
feature modulation into the field of semantic segmen-
tation of RS images for the first time, and propose a
novel network structure ( CKFM-UNet) for RS images
segmentation by combining the advantages of global
receptive field of Swin Transformer and high-
precision local features of CNNs, which improves the

performance of RS images segmentation.
2 Methodology

As shown in Fig. 1, the whole architecture of our
CFM-UNet is constructed based on the structure of
encoder and decoder. Especially, CFM-UNet creates
a parallel encoder structure composed of a residual
network based on CNN ( called local encoder) and a
Swin Transformer ( called global encoder), which
transmits information through the Cross Feature Mod-
ulation Module to fully capture discriminant features
of RS images.

2.1 Network structure

The structure of the encoder can be divided into a
global encoder and a local encoder. The following de-
scribes the global encoder, namely the Swin Trans-
former encoder. For an input RS image X € R""
where H denotes the length of the image, W denotes
the width of the image, and 3 denotes the image di-
mension. When the RS image passes through the

patch partition layer, it is divided into 4 X4 non-
overlapping patches. The size of each patch tensor is
H/4 x W/4 x 48, and then the patch tensor is
projected onto C dimensions by the linear embedding
layer. Next, the Swin Transformer block searches
from the local detail information of the image to the
global contextual information. Finally, the one-stage
feature map tensor is output. In the next stage, the
patch merging layer merges each set of 2X2 neigh-
boring patches in the feature map, and the output
dimension is set to twice the output dimension of the
previous stage by reducing the dimensionality of the
space in exchange for more channels. As in the first
stage, the network then passes through the Swin
Transformer block. Similarly, the remaining two
stages of the global encoder are constructed. As
shown in Fig.2(a), in order to enhance the across-
windows information connection, W-MSA and SW-
MSA are alternately implemented in successive Swin
Transformer blocks. In the local encoder, namely the
CNN-based residual network, the input RS image X
is first fed to ResNet50 so that the network can
obtain the CNN features of four coding stages, and
in this paper ResNet50 is compressed by half on the
channel. Due to the constraints of the experimental
conditions, we apply ResNet50 as the backbone of
the CNN branch.
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(b) The architecture of CFMM

Fig.2  Architecture of some modules
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The original Swin Transformer and residual net-
work are described in the previous section, and in
this paper each stage of the encoder is followed by a
cross feature modulation module, which will be de-
scribed below.

After the above four stages in two parallel en-

coders, we get feature F! g R/ X(W32X768 =gt o

R (H/32)%(W/32) x1024

, which is sent to the decoder after

a concatenational layer and a convolutional layer. In
each decoder stage, like UNet, firstly CFM-UNet
concatenates the global encoder features ( F', F?,
F?) and the local encoder features (F!, F’ F’)
one by one for each stage. Then, CFM-UNet concat-
enates the encoder features and decoder features by
At 3 x3

convolutional layer the number of channels of the

skip  connection. last, through a
feature is reduced.

2.2 Cross Feature Modulation Module ( CFMM )
We found that the transformer’ s features have
special signatures such as global attention but coarse
textures differing from the CNN’ s features that have
local attention but clear details. Inspired by the re-
search direction of style transfer and conditional

15-17 .
U1 g cross feature modulation

image enhancement
is attached after each encoder stage. Concretely, we
use transformer features as conditional information to
predict modulation parameters, which then modulates
CNN features. On the contrary, we also use CNN fea-
tures as conditional information to predict modulation

which

features. The obtained feature maps are then sent to

parameters , then modulates transformer

Tab.1 Segmentation results of some methods on the Vaihingen dataset

the next stage respectively. With the above cross
modulation method, the CFMM exchanges the prior
information extracted from the transformer branch
and the CNN branch with each other, and forms a
variety of series and parallel structures of transformer
and CNN blocks at different depths, which enhances
the information flow and feature selectivity in the
network differently from some existing methods. In
this way, we expect to transfer transformer’ s global
attention to CNN features without destroying the de-
tails of CNN features and to obtain the inductive bias
of CNNs to accelerate transformer convergence,
which can be expressed as

Fopn =M, (FL)®F, @M, (F,) (1)

mt ,me
respectively, represent the features of

where F | F

mt 9 me 9

the global encoder and local encoder after modulation ;
S denotes the stage level, which can take the values
from 1 to 4. 7y and B indicate the scaling and shifting
matrices of affine transformation, which both have
the same size with the corresponding dimension of
and M,

() and M,( - ) are the modulation parameters gen-

CNN features F, or transformer features F ;
eration blocks that contain two convolutional layers
controlled on CNN features F, or transformer features
F,. Here, we use one 5X5 convolutional layer and
one 7x7 convolutional layer instead of the original al-
gorithm’ s two 3X3 convolutional layers. &) and @
denote the element-wise multiplication and element-
wise addition, respectively. This cross feature modu-

lation module is shown in Fig.2(b).

(%)

ToU Evaluation indicator

Methods Low. Tree Car Impervious Building mloU
vegetation surface

FCN[? 54.80 70.38 39.92 73.22 78.97 63.46
UNet!? 57.23 71.63 48.29 72.91 81.68 66.35
Deeplab V3+4] 56.09 71.54 50.30 74.85 83.01 67.16
UperNet'3 55.65 71.31 47.26 73.45 81.50 65.84
DANet ¢ 56.88 71.21 42.68 73.54 81.40 65.14
TransUNet! %] 55.07 71.08 55.13 73.27 81.01 67.11
Swin-UNet[ 12! 49.48 67.12 30.78 69.31 73.37 58.01
ST-UNet 4] 57.79 72.53 61.48 76.36 82.98 70.23
CFM-UNet( ours) 58.08 72.80 60.71 76.46 83.33 70.27
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Tab.2 Segmentation results of some methods on the Potsdam dataset (%)
ToU Evaluation indicator
Methods Low Impervious .
. Tree Car Building mloU
vegetation surface
FCN'?) 66.10 63.19 74.34 77.41 83.52 72.91
UNet 3! 64.59 65.44 76.16 77.10 82.83 73.22
Deeplab V3+[4] 67.53 63.05 78.05 79.01 84.76 74.48
UperNet[S] 65.65 60.40 76.57 76.95 83.93 72.70
DANet! %] 66.46 63.47 75.28 77.35 83.45 73.20
TransUNet! %! 67.16 64.10 79.33 78.61 85.60 74.96
Swin-UNet! 2! 59.03 50.96 71.15 71.45 75.02 65.52
ST-UNet! ') 67.89 66.37 79.77 79.19 86.63 75.97
CFM-UNet( ours) 69.49 68.32 78.89 79.58 86.86 76.63
B Building Low vegetation 0 Tree Car WM Clutter/Background
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Image
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Fig.3 Examples of semantic segmentation results on the Vaihingen dataset

3 Experimental Results

3.1 Datasets
In this paper, we use two state-of-the-art airborne
image datasets from the city classification and 3D
building reconstruction test programs provided by IS-
PRS'*

(DSM) generated from high-resolution orthorectified

. The datasets employ Digital Surface Models

photographs and corresponding dense image matching
techniques. Both dataset areas cover urban scenes;
Vaihingen is a relatively small village with many in-
dividual buildings and small multi-story buildings.
Following Literatures [ 19], [14], [20], [21]
and [22], we choose 11 images numbered 1, 3, 5,
7,13, 17, 21, 23, 26, 32, and 37 as the training
set, 5 images numbered 11, 15, 28, 30, and 34 as
the testing set, and crop them to 256 X 256, respec-
tively. Potsdam is a typical historical city with large
building blocks, narrow streets and dense settlement
structures. With reference to the previous Literatures
[8], [14] and [19],
images numbered 2_13, 2_14, 3_13, 3_14, 4_13,

we utilize 14 color rgh

414,415,513, 5_14, 5_15, 6_13, 6_14, 6_
15, and 7_13 as the testing set, and the remaining
24 color rgh images as the training set. Similarly, we
divide these images into 256 X 256. Each dataset has
been manually classified into the six most common
land cover categories. Following Literatures [ 14] and
[23], “ Clutter/Back-

ground” when calculating evaluation indicator on the

we neglect the category of

above two datasets.
3.2 Implementation details
(1) Training settings

Based on the Pytorch framework, our network
is built. All experiments are implemented on a single
GPU “NVIDIA Geforce RTX 3090 24-GB GPU”.
The batch size and the maximum epoch is set to 8
and 100,

we use Stochastic Gradient Descent (SGD) optimizer

respectively. Following Literature [ 14],

with weight decay of 1e-4 and momentum term of 0.9
to train the network. Besides, we apply 0.01 as the

initial learning rate and “Poly”

gy-

as the decay strate-
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Fig.4 Examples of semantic segmentation results on the Potsdam dataset

(2) Loss function
[24] and [25],

in order to eliminate the impact of category imbal-

Following Literatures [ 14 ],

ance, we use the joint loss function consisting of
dice loss L

pervise the model. The joint loss function L is ex-

and the cross-entropy loss L. to su-

Dice

pressed as below
L=LegtLy,, (2)

(3) Evaluation criteria

Following the conventional semantic segmentation
evaluation method, the experimental results are ana-
lyzed in this paper using the mean Intersection over
Union ( mloU). mloU is implemented as shown
in equation
. TP
0 FN + FP + TP
where TP denotes the number of positive categories
FP denotes the

number of positive categories with incorrect prediction

mloU =

n+1!

with correct prediction results;

results, and FN denotes the number of negative cate-
gories with incorrect prediction results. The larger
the mloU value, the better the model segmentation
performance.
3.3 Semantic segmentation results and analysis
(1) Performance comparison

To be fair, the CNN backbone networks of all
models involved in the comparison were Resnet50
without pre-training. The training settings are the
same for all models. In our proposed method, the di-
mensions C and the number N of Swin Transformer
blocks in each stage can be obtained by following the
standard Swin Transformer blocks: C = {96, 192,
384,768}, N=1{2, 2,6, 2}.
forms the second best model by 0.04% on Vaihingen

Our model outper-

dataset and 0.66% on Potsdam dataset in mloU,
outperforming the majority of ResNet-based models.
The detailed experimental results are presented in
Tab.1 and Tab.2. And Fig.3 and Fig.4 shows the
visualized prediction results of several semantic seg-
mentation methods involved in Tab.1 and Tab.2. It
can be observed that Swin-UNet lacks spatial location
information, resulting in many semantic fragments in
its segmentation results. Compared with other models
CFM-UNet reduces segmentation errors, especially
for ground objects with high similarity.

(2) Efficiency analysis

For the comprehensive comparisons, Tab.3 lists
the computational complexity, model parameters,
speed and accuracy of all models in the same operat-
ing environment. Due to the parallel structure of
CNN and transformer, our method has a larger num-
ber of parameters but higher accuracy.

(3) Ablation study

We performed ablation experiments by comparing
the performance of removing the introduced cross
feature modulation and the present method on
Vaihingen dataset. Compared to the model without
the cross feature modulation, the proposed model
has a greater improvement on both datasets in mloU.
The validity of the cross feature modulation module
is experimentally verified. The specific experimental
results are shown in Tab.4.

In addition, in order to explore the effects of
different components of the proposed method, we
compare cross feature modulation with single-

direction feature modulation and the feature fusion

strategy in Literature [ 26 ] on Vaihingen dataset.
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Defining the single-direction feature modulation of

the CNN to the transformer as C>>T and the single-

direction feature modulation of the transformer to the
CNN as T>>C, the results are shown in Tab.4.

Tab.3 Comparison of computational complexity, model parameters, speed and accuracy on Vaihingen dataset

Methods FLOPs(G) Parameters( MB) Speed ( FPS) mloU/ (%)
FCN'2! 6.2 22.70 370 63.46
UNet 3! 7.1 25.13 210 66.35
Deeplab V3+4] 14.8 38.48 69 67.16
UperNet!*] 37.1 102.13 58 65.84
DANet!®] 13.1 45.36 107 65.14
TransUNet[ %] 36.2 100.44 33 67.11
Swin-UNet! 12! 6.5 25.89 52 58.01
ST-UNet! ') 52.3 160.97 70.23
CFM-UNet ( ours) 66.1 209.71 70.27

Tab.4 Ablation experiment of the proposed modules on

the Vaihingen dataset (%)

Evaluation indicator

Methods E—
mloU
CFM-UNet without CFMM 67.32
CFM-UNet without C>>T 67.43
CFM-UNet without T>>C 68.56
CFM-UNet replaces CFMM with fusion strategy 60.14

in Literature [ 26 ]

CFM-UNet 70.27

From the results, the performance of CFM-UNet
without T > > C is better than that of CFM-UNet
without C>>T, so this is mainly because the trans-
former branch is working. Compared to CFM-UNet,
the single-direction feature modulation network uses
fewer cross connections and reduces the information
flow within the network, resulting in lower accuracy.
However, CFMM performs better than the fusion
strategy with the similar cross structure in Literature

[26], demonstrating its effectiveness.
4 Conclusion

In this paper, we propose a semantic segmentation
model for RS images based on swin transformer,
which applies the cross feature modulation module to
combine the respective advantages of CNNs and trans-
former to improve the segmentation performance.
Through experiments, the mloU of CFM-UNet on
two publicly available datasets, Vaihingen and Pots-
dam, are 70.27% and 76.63% , respectively, which
can maintain a high segmentation performance com-

pared with other competitive networks. Although the

proposed network has achieved some progress in per-
formance, it still cannot meet the real-time segmen-
tation requirement, which will be the focus of the

next stage of research.
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