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Abstract: Spatial linear features are often represented as a series of line segments joined by measured endpoints in surveying and
geographic information science. There are not only the measuring errors of the endpoints but also the modeling errors between the
line segments and the actual geographical features. This paper presents a Brownian bridge error model for line segments combining
both the modeling and measuring errors. First, the Brownian bridge is used to establish the position distribution of the actual
geographic feature represented by the line segment. Second, an error propagation model with the constraints of the measuring error
distribution of the endpoints is proposed. Third, a comprehensive error band of the line segment is constructed, wherein both the
modeling and measuring errors are contained. The proposed error model can be used to evaluate line segments’ overall accuracy
and trustability influenced by modeling and measuring errors, and provides a comprehensive quality indicator for the geospatial
data.
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1 Introduction

Error modeling of spatial data has always been a core
scientific issue in the field of surveying and mapping
and Geographic Information Science (GIS)!'"®'. The
positional error modeling of points has been well
studied and solved, while the error modeling of the
linear features is still a challenge and needs to be
further developed.

Since the 1950s, researchers have made great
contributions to modeling the errors of spatial linear

features. The e-band model *”

is a representative
deterministic model, in which the width of the error
band is a fixed value throughout the line segment.
Then the error distribution of the line segments’
endpoints is commonly used to derive statistical error

8-13]

models'*"'. Literature [ 8] assumed that the end-

points’ coordinate errors of line segments are inde-
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pendent and subject to binary normal distribution,
and the errors of the interpolated points along the
line segment were derived by the error propagation
from the endpoints. In this error band model, the er-
ror of the middle point on the line segment is smaller
than the errors of the two endpoints, which indicates
that the shape of the error band is a “dumbbell” like
concave set. Furthermore, Literature [ 14 ] presented
the generic G-band model based on the stochastic
process. In this method, the line segment is regarded
as a composite of infinite linearly interpolated points.
The distributions of the line segments and the analyti-
cal expression of the error band boundary were de-
rived statistically. Literature [ 15] proposed a statis-
tical simulation error band model which regards the
whole line segment as a random variable. In this
model, the error distribution of the line segment was

obtained based on the statistical characteristics of the
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endpoints of the line segment and the pre-determined
confidence level. Literatures [ 16—17 ] proposed a
standard error band model based on the global error
probability distribution of line segments. In this
method, an accurate analytical expression of this
error band based on the probability density distribu-
tion of the line segment was derived.

The shapes of the above error bands change
eradually from equal width band ( &-band) to the
“dumbbell” like shape, which is narrower in the
middle part of the line segment than at the
endpoints. Namely, the position errors in the middle
part of the line segment are smaller than that at the
two endpoints. In the above error models, only the
measuring errors of the endpoints were considered,
and the errors of the points between the endpoints
can be derived based on the endpoints’ measuring
error. The continuous actual geographic features are
usually captured as discrete points connected by
straight line segments in the feature representation' '™ .
However, besides the measuring errors of the endpoints,
there also would be positional differences between
this approximated representation formed by line seg-
ments and the actual continuous features' .
Here, we denote these positional differences caused
by the line segments representation as the modeling
errors. Ignoring the modeling errors may cause inac-
curate error modeling for the line segments %",

Some research attention has been focused on
the modeling error for linear features. Literature
[19] proposed a method to depict the modeling
errors using empirically determined functions. One
suggested modeling error funtion is the exponential
function, which is dependent on the distance from
the center of gravity of the line. Literature [ 22] de-
fined the magnitude of the modeling error as the
maximum distance between the quadratic curve and
the line segment. Literature [ 21 ] proposed a method
to evaluate the modeling error by randomly inserting
sub-vertices with a uniform distribution along the
line segment between two adjacent observed points.
Some researchers used the positional differences be-
tween spline curves and line segments to describe

[24-25]

modeling errors . The positional differences be-

tween line segments and their represented actual fea-
tures are unknown and random. Therefore, the mod-
eling errors are random and may have different forms
with respect to different actual geographic features. It
is necessary to establish a general error modeling
method that can quantify the random and various
modeling errors. Brownian motion, which is a con-
tinuous stochastic process, is popularly employed to

2628 .
', Brownian

describe the motions of moving objects'
motion is constituted by random positional displace-
ments. Different shapes of curves can be obtained by
the combining of random positional displacements.
Therefore, various linear features that have different
shapes can be modeled by using the Brownian
motion. This paper focuses on the error modeling
method based on the Brownian motion.

This paper aims to present an error model of
line segments by using the Brownian motion, in
which both the modeling and measuring errors are
taken into account. With the measuring errors of the
endpoints as the prior constraints, the Brownian
bridge error model is obtained to depict the overall
error distribution of line segments.

The rest of the paper is structured as follows.
Following the introduction, the Brownian bridge
error model of line segments with modeling and
measuring errors is presented in Section 2. In
Section 3, numerical experiments and the results are
presented, and the proposed error model is used to
compute the error distribution of line segments with
endpoints’ prior positional errors. Finally, the con-

clusions are presented in Section 4.

2 Brownian Bridge Error Model of Line
Segments with Modeling and Measur-
ing Errors

2.1 Position distribution of arbitrary points on
actual geographical features

Line segments are the essential components of the

linear feature representation. A straight line segment

represents the actual geographical feature only

through the two observed endpoints. However, the

actual geographical feature represented by the line

segment, such as a segment of a road or coastline,
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is generally irregular and non-linear. This leads to
the modeling error, which is the positional difference
between the actual geographical feature and the line
segment. In addition, the modeling errors are
different with respect to different features. Therefore,
the Brownian motion is employed to describe the po-
sitional distribution of an arbitrary point on the geo-
graphical feature, which is represented by a line
segment.

It is assumed that a segment of a geographic
linear feature in the real world is represented as a
line segment Z,Z,. The endpoint coordinate vector of
line segment Z,Z, is S,=(Z),Z1)" = (X,,Y,,X,,
Y,)", which follows the four-dimensional normal
distribution, namely

S,~N(p.3) (1)
where, = (po, i )" = (o, oo, ) s (it ))"
is the expectation vector, u, is the expectation of the
endpoint Z,; 3=61,,, is the covariance matrix of the

endpoint coordinate vector S, of Z,Z,, and I, is

19
the 4x4 identity matrix; and the covariance matrix
at the endpoint Z, is denoted as 3, .(1=0,1).

Fig.1 presents a possible case of the position of
an actual linear geographic feature and its represen-
tation of line segment Z,Z,. In this figure, the black
line denotes the positional expectation gy, of line
segment Z,Z,, the green ellipses are the standard
error ellipses of the endpoints’ positions, and the
blue irregular line represents a possible position of
the actual feature represented by line segment Z Z,.

The positions of the points on the actual geo-
graphic features represented by the line segment can
be expressed as a stochastic process as follows

1Z(1),te[0,d]} (2)
where, t is the distance between the left endpoint’ s
positional  expectation pm, and the positional
expectation (1) of Z(t), t=|pmgu(t) |, and d re-
presents the distance between the positional expecta-
tion of the two endpoints (Z, and Z,), d= |ugu, |.
The position of the actual geographical feature ( as
shown by the irregular blue line in Fig.1) is one of
the sample curves z(t) (z e Z,it e [0,d] ) of the
stochastic process {Z(t),t[0,d]}.

The difference between the position Z () of a

point on the actual feature and its positional expecta-
tion e (t) is denoted as the error vector £(t) (as
shown by the black arrow in Fig.1) , and can be ex-
pressed as follows
E()=Z(t)p(1) (3)
The position of the actual geographic feature re-
presented by line segment Z,Z, is unknown and ran-
dom. By assuming that the position of the actual fea-
ture is subject to a normal distribution and its posi-
tional change within a small range is relatively
smooth and uniform, the Brownian motion stochastic
process can be then used to describe the position
Z(t) and the corresponding error vector £(t) of the
actual linear feature.

Z(1)

Z(l

&0), &0 mo
¢(d)
Ho u(r) [ \/\51( )

Fig.1 Line segment Z,Z, and the corresponding actual

geographic feature

The error vector £(t) is affected by the posi-
tional errors of both the line segment’ s left endpoint
Z, and right endpoint Z,. At any point g (¢) , the er-
ror vector obtained by the error propagation of the
measuring error of the endpoint Z, combined with the
modeling error is denoted as “the error vector associ-
ated with the endpoint Z,”, namely & (). The
overall error vector £(t) consists of two error vectors
of £,(¢) and &,(¢), which are associated with end-
points Z, and Z,, respectively. Therefore, the
overall error vector £(1) can be expressed as follows

E£(0)=£,(1)+€,(1) (4)
where, {£,(t),te[0,d]} and {&,(t),te[0,d]}
are also Brownian motion stochastic processes under
stationary and normal assumptions, and their
variance in the unit distance is ZBH Namely, &,(1)=
B.(t), and B,(1) ~N(0,t23i). The position of any
point of the actual linear feature can be further ex-
pressed as

2)=£0 6,04 1- 4+ by (5)

The error vector £(¢) is affected by the measur-
ing errors of both the left and right endpoints Z, and
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Z,, and the positional expectation of Z (1) is

t t
[l—dju(ﬁjﬂl. The error propagation of the meas-

uring errors of left and right endpoints Z, and Z,,
combined with the modeling error, will be further
studied in the next section.

2.2 Integrated modeling and measuring error
propagation method with the constraints of
endpoints’ measuring errors

The overall error vector £(t) is influenced by both

the measuring errors of the endpoints and the model-

ing error of the line segment. However, there are
only the measuring errors at the two endpoints.

Therefore, the constraints that the error vector £(t)

at the endpoints should be equal to the endpoints’

measuring errors need to be introduced.

The error vector &€,(¢) associated with the right
endpoint is discussed firstly. Based on the
constraints of endpoints’ measuring errors and the
conditional distributions of multivariate normal distri-

[29]

butions' ™", the error vector £, (t) with constraints

can be calculated as follows

£:(1)= Bu(1) | =B (1) =B, (d) 4 (Z, -
) s1e0,d] (6)

where, B, (1) —éBl( d) is the modeling error at the

point w (t) (t € [0,d] ) on the expected line
segment that is propagated from the error at the end-

point Z,, and is denoted as “the modeling error as-
. . ” t . .
sociated with Z,” ; and F(Zl ¢, ) is the measuring

error at e (t) (te [0,d] ) that is propagated from
the error at the endpoint Z,, denoted as “the meas-
uring error associated with Z,”.

It is assumed previously that the distribution of
&,(t) follows Brownian motion without considering
the constraints of endpoints’ measuring errors. After
the introduction of the constraints of the endpoints’
measuring errors, the distribution of & () still par-
tially follows the Brownian motion but is constrained
at the right endpoint, which is transformed into a
Brownian bridge. Therefore, the error vector &, (¢)

at the right endpoint is equal to the measuring error

of the right endpoint, namely

. d
Z,-m =B (d)zBl(d)—EBl(dﬂz) ,a>0(7)

where, B* (1) is a Brownian bridge stochastic

process which is followed by the error vector &, (1)
4 t
at the right endpoint, B” (t)=B,(t)——B,(d+a) ;
d+a

and a is the parameter that affects the magnitude of
the modeling error.
According to Eq. (7), the covariance matrix of

the Brownian motion {B,(¢),t€ [0,d]} and the
measuring error related to Z, [i.e. , ;(Zl—ul)j is
obtained as follows
t at’
cov[Bl(z) 7 (Z,—m, )jz mzm

where, ¥, represents the variance of the error asso-

(8)

ciated with Z, per unit distance. By calculating the
variance of the measuring error of the right endpoint
in Eq. (7), the relationship between 231 and the
variance ¥, | of measuring error at Z, is obtained

as follows
d
d I_E 231 =X, (9)

By substituting Eq. (7) into Eq. (6), the error
vector &, (¢) with the constraint of measuring errors
considering the correlation between the modeling error

and measuring error, is expressed as follows

£(D=B()= " B(d+a)  (10)

where, B, (t) is a Brownian motion stochastic
process that the error vector &, (t) follows before
considering endpoints’ constraints.

Similarly, the error vector &,(#) related to the
left endpoint can be further obtained when the end-
point’ s measuring error is taken as a constraint. It is

formulated as follows

£/(1)=B,(d-D)=""B,(d+a)  (1D)

The relationship between the variance 3, of the
error associated with Z; in the unit distance and the
variance %, , of measuring error at Z, is obtained

as follows

d
d(l—mjzgo =3, (12)
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By substituting Egs. (10) and (11) into Eq. (5),
the position of any point of the actual linear feature re-

presented by the line segment Z,Z, is expressed as

Z(l):Bo(d_t> _jT_;BU(d"'a) +(1_;jﬂ0+31(t)

t t
_EBl(d-l_a)_*—?"l?tE [O,d] (13)

where, B,(¢) is a Brownian motion stochastic process

that the error vector £,(1),(i=0,1), follows before con-
d
sidering endpoints’ constraints, and d(l—j 3, =
d+a :

Zi,i; and Bi(t> NN(O’tZB,)’(i:O’I)'
By combining Eqgs. (13), (9) and (12), the

positional expectation and variance of Z(t) are de-

rived as
—(1—lj +! 14
m(t)= g ot (14)
3= ey Dy s)

The parameter @ in Eq. (15) is unknown and
needs to be determined. According to Eqs. (9) and
(12), the value of parameter a affects the variance
thi( i=0,1). Therefore, a is the parameter that af-
fects the magnitude of the modeling error. The
method of determining the parameter a of the line
segment model is further explained below.

In order to determine the parameter a, the rela-
tionship between the modeling error and characteristics
of line segment Z,Z, needs to be researched. The

variation trend of error variance of the line segment
d

Z,Z, is discussed at the position M(2j , which is

the expected midpoint of Z,Z,. The difference between

d
the variance 2(2j of the line segment’ s error at

d
M(Z) and the variance 3'(0) of the left endpoint’s
error is defined as an error increment A3 as follows
d d
AZ=2(]—Z(O)=Z(O) (16)
2 2a

Firstly, only the position of the left endpoint is
taken as the prior information in the Brownian
motion. Under stationary and normal assumptions,

the position of the actual feature follows the

Brownian motion i.e., B (t); and the error’ s
variance in the unit distance of the line segment is 3
(B(1)). According to the positional constraint of
the left endpoint and the conditional distributions of

multivariate normal distributions'*” |

the position
Z(t) of the linear feature follows the Brownian
motion starting at the left endpoint Z,, namely

Z(1)=B(1) | =Z,+B(1) (17)

From the definition of the Brownian motion, any

constraints

point B(z) at the Brownian motion follows a normal
distribution, i.e., B(t) ~N(0,t=(B(1))), and
the variance of B(t) is 2 (B(t))=t3(B(1)).
Therefore, the variance of Z(t) is expressed as fol-
lows
2,(1)=2,(0)+2(B(1))=2,(0) +=(B(1))
(18)
The X(B (1)) in Eq. (18) is a fixed value
and is independent with of the distance d. According

to Eq. (18) and the definition of error increment in

Eq. (16), A3, is reformulated as follows
d d d
AS, _20(2j —20<o>_z[3(2)j =S S(B(1)) <d
(19)

In Eq. (19), error increment A3, is expressed
as the product of the distance d with a constant inde-
pendent of d. Therefore, the error increment AY is
directly proportional to the distance d between u,
and g, , namely AY ocd.

However, after the introduction of the positional
distribution of right endpoint Z, in the Brownian mo-
tion, AY is constrained to be smaller than A3, be-
cause of the addition of more prior information.
Therefore , according to Eq. (16), it is suggested to
use the power function to depict the relationship be-
tween parameter a and the distance d, namely

a=d" (20)

Based on the above analysis, A3 increases with
the increment of d, and the amplitude of the in-
creasement is less than that in the directly propor-
tional relationship, so the power ¢ is greater than 0
and less than 1, i.e., O0<c<1. Therefore, it is sug-
gested in this paper that parameter a can be approxi-

mately expressed as

a=d"’ (21)
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By substituting Eq. (21) into Egs. (13) and

(15), and combing Eqs. (13)—(15), the posi-
tional distribution of any point of the actual linear
feature can be obtained. In the next section, a com-
prehensive error boundary will be constructed to de-
scribe the range of probable positions where actual
features may occur.
2.3 Analytical expression of the error boundary
In this section, based on the error ellipses of positions
between the endpoints of the line segment, the error
boundary model of line segments is further constructed
to describe the possible range of positions of the ac-
tual linear features represented by line segments.

When the standard deviations of the measuring
errors at the endpoints of the line segment in the x
and y directions are equal, the error ellipse of the

pointp (t) (te [0,d]) is a circle with center of

p(t) and radius of R /3 (1) , where R is the ratio
of the axis’ length of the error ellipse to that of the
standard error ellipse. 3 () is the variance of Z (1)
in the x direction and is an element of the covariance
(0 % (0 .
Ew(t) 2))0) J , which
is calculated by Eq. (15) as follows

d-t) (a+t) . t(d+a-t
oo i

The vertical distances from the envelope of the

matrix of Z(1), 3(t)= [

3.(1)= 5§ (22)

error ellipses of all points on the line segment to the
positional expectation g, are calculated. This ver-
tical distance is denoted as a function g (k) and is
used to represent the width of the error band. It is
assumed that the foot of perpendicular is u (k) , and
u(k)= (u,(k),u,(k) ' uw (k) is located on the
line where the expected line segment g, falls; k is

the distance from u (k) to the expectation of the left

-u (k
endpoint (u,), and k=sign(wj \ou(k)|.
/‘LOx_lu’lx
R*6-k7,
5 2R’S , 2R’dS
gh)=y—"0 o
2R°6+ad  2R6+ad

R*6-(k-d)?,

2

+7 b
2R*ab+a’d

Therefore, the vertical distance g (k) from the
boundary of the error band to the line segment p
can be written as
g(k)= max RPY () -(k=1)*  (23)
By substituting Eq. (22) into Eq. (23), the
vertical distance g( k) should satisfy the following

function
g (k)= max h,(t) (24)

where h, (1) is a quadratic equation of ¢, which is

expressed as follows

R*6 2
sResrad)| o
a a
h,(t)=- t +R*5—k*+
(1) ( ad j 2R
+1
ad
RS 2
2R S+ad)| a
a a
( ad j 2R*S (25)
+1

ad
h,(¢) increases and then decreases on t € R,
and takes the maximum value at t=¢, (k). The maxi-
mum point ¢, (k) is obtained by calculating the root
of the first derivative of the function h,(¢), and is
expressed as follows
L (k)= R2d25+kad: d +2a(2ik—ad2 (26)
2R*8+ad 2 4R°6+2ad
By substituting Eq. (26) into Eq. (25), the
maximum value of h,(¢) is derived as H(k)
H(k) = r[rleaghk(t) =h,(t,(k))=RS-k +
2R*8+ad (R’ dd+kad)?
( ad j (2R26+ad )
By combining Eq. (24) and Eq. (27), it is
known that when 0<<1, (k) <d, g’ (k)=H(k);
when ¢ (k) <0 ort,(k)>d, g (k)="h,(0) or
h,(d), and g’(k) #H(k). The position of the error
band boundary of the line segment defined by the

(27)

vertical distance g(k) is summarized as follows

R2
ke[ -RJS ,—5)
a

R’ R’

4d62
R re[ s avs]
a a

(28)

RZ
ke (d+—8,d+R /5]
a



Xiaohua TONG et al.;Positional Error Model of Line Segments with Modeling and Measuring Errors Using Brownian Bridge 7

According to Eq. (28), the error boundary of

the line segment consists of three parts. When k e
R R

[-R J6,—8) and ke (d+—8,d+R J6 ], the two
a a

ends of the error band boundary are circular ares and
are symmetric about the line segment’ s positional
R R
expectation ot ,. When ke [ ——8,d+—8], the
a a
middle part of the error band boundary is two elliptic
R R’
arcs intercepted by the interval of k e [ —3&,d+—3§].
a a

And the two elliptic arcs are symmetric with respect
to pott ;.

By setting the first derivative of the boundary
equation to zero, we can find that the extreme point
of the error band boundary is near the middle point
of the line segment. Furthermore, the second deriva-
tive of the boundary equation is negative. Therefore ,
it is found that from the left endpoint to the right
endpoint, the error band’ s width increases firstly
and then decreases. It is obvious that the error
band’ s width in the line segment’ s middle part is
greater than that at the two endpoints. Therefore,
compared with the error band presented by Caspary
and Scheuring® | which is a concave set without
considering the modeling error, the obtained
Brownian bridge error band is a convex set, which
describes the range of probable positions of the
actual ground objects represented by line segments.
In this model, the modeling and measuring errors
are integrated to form the total error. It can be used
to evaluate the overall accuracy and trustability of
the line segment. It is designed for the case that
there are both modeling and measuring errors con-
tained in the line segment. In the next section, the
Brownian bridge error model proposed in this paper

will be verified and analyzed.
3 Numerical Experiments and Discussion

In this section, some numerically simulated line seg-
ments were used to verify the proposed Brownian
bridge error model. Meanwhile, the effects of the pa-
rameters 6 and d on the shape of the error band were

analyzed. 6 is the variance of the endpoint, and d is

the distance between the positional expectation of the
two endpoints.

The parameters of § and d are two critical pa-
rameters that affect the size of the error band. There-
fore, in order to analyze the different effects of 6 and
d on the error band, we divided the experiments into
two cases. In Case 1, there were six line segments
with the same variance 6 but different distances d. In
Case 2, there were six line segments with the same
distance d but different variance 6.

It is assumed that the coordinate vector s, con-
sists of two endpoints, §, = (Zg,le) = (xo yYos%Xq,
y, )", and the covariance matrix of the line
segment’ s two endpoints is 3=51,,,.

Tab.1 shows the endpoints coordinates of six
line segments and their corresponding parameters of
0 and d in Case 1. In this case, all the line seg-
ments’ endpoints have the same error variance & of
1 m*>, while their distances d between the positional
expectations of the two endpoints are different.

Tab.2 shows the endpoints coordinates of the
other six line segments and their corresponding pa-
rameters of 6 and d in Case 2. In this case, all the
line segments have the same distance d, while the
error variances 6 are different. In both cases, the pa-
rameter R of the error band boundary is set to 3,
which means that the ellipses with three standard de-
viations were used to construct the error bands.

In order to evaluate the errors of the line seg-
ments in both cases, four parameters reflecting the
characteristics of the error band were calculated and

shown in Tab.1 and Tab.2, respectively. The calcu-

d d
lated parameters include a, Tr[zj , g(zj , and p.

Among these four parameters, a is the parameter af-

d
fecting the modeling error; Tr (2j represents the

2

which has the maximum error on the line segment

covariance matrix’ s trace at the point (u (j ),

d
AVAY: g(zj denotes the vertical distance from the

d
error boundary to the point M(Zj , which is the
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maximum half-width of the proposed error band; p is

d
the error’ s increment of ,u,(z relative to the left

d
&2
endpoint Z,, and p=——"--1.
R /&

It can be seen from the results in Tab.1 that,

when the error variance 8 of the line segment’ s end-
points is fixed, with the increasing of the distance d,

the parameter a, the covariance matrix " s trace

d d
Tr(zj , the vertical distance g (2) , and the

. .
error’ s increment p all increased.

Tab.1 Original data of line segments and derived error parameters in Case 1

d d
Line X Yo X, Y1 8 d a Tr ( 7) g ( 7)
2
No. /m /m /m /m /m? /m /m P /m !
1 0 0 25 0 1 25 5.000 7.000 5.613 0.871
2 0 0 30 0 1 30 5.477 7.477 5.801 0.934
3 0 0 35 0 1 35 5.916 7.916 5.986 0.990
4 0 0 40 0 1 40 6.325 8.325 6.121 1.040
5 0 0 45 0 1 45 6.708 8.708 6.260 1.087
6 0 0 50 0 1 50 7.071 9.071 6.389 1.828

As shown in Tab.2,when the distance d of line

segments is fixed, with the increment of the error va-

. d : .
riance 6, the error trace Tr(2 and the vertical dis-

tance g[zj also increase, but the parameter a

the error increment p remain unchanged.

Tab.2 Original data of line segments and derived error parameters in Case 2

and

d 1
Line Xy Yo X ¥ 9 d a T’(?) g((?)
p
No. /m /m /m /m /m? /m /m . Jm
1 0 0 40 0 0.5 40 6.325 4.162 4.328 1.040
2 0 0 40 0 1 40 6.325 8.325 6.121 1.040
3 0 0 40 0 1.5 40 6.325 12.487 7.496 1.040
4 0 0 40 0 2 40 6.325 16.649 8.656 1.040
5 0 0 40 0 2.5 40 6.325 20.811 9.677 1.040
6 0 0 40 0 3 40 6.325 24.974 10.601 1.040

Based on the above two cases of experiments, it

can be seen that: (D The parameter a, the error in-
dicators of the line segment ( Tr (;Zj and g(i) )
and the error’ s increment p increased with the in-
creasing of the distance d; (2 The value of the error
variance 6 only affects the value of the intermediate
point’ error of the line segment but does not affect
the parameter a and error’ s increment p.

Fig. 2 shows the boundary of the Brownian
bridge error band of line segment 4 in Tab.1 (also
the same line segment 2 in Tab.2). This Brownian

bridge error band is composed of two circular arcs on

the left and right sides and two elliptic arcs on the

upper and lower side. In this figure, the four red
points are the intersection of the circular arcs and

the ellipse arcs. The left and right circles are the
d
endpoints’ error ellipses, g(zj is the vertical dis-

tance (half-width of the error band) from the error
boundary at the point with the maximum error to the
positional expectation pyu,. r(0) is the radius of the
error ellipse at the endpoint, and r(0)=R 5. The
width of the error band increases and then decreases

from the left endpoint to the right endpoint. The

d
maximum value is reached at M(Zj The shape of
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the proposed Brownian bridge error band is spindle-
shaped which is wider in the middle part of the line
segment than at the endpoints. The shape of the
error band means that the position errors in the mid-
dle part of the line segment are larger than that at

the two endpoints.

Ay
g/i\\
r(0)] 2] [\ F
-RVs \{|2/ d\/ d+Ry5

Fig.2 Boundary of Brownian bridge error band

According to the derived error parameters of

d
line segment 4 shown in Tab.1, the width G[Zj of
the error band at the point with the maximum error

on the line segment Z,Z, can be computed as

d d / d
G[zj =2g[2j =2 (1+2f) r(0)=12.241 m

d
The width G(Z] of the error band at the point

| d
with the maximum error is (1+{) times the di-

ameter 2r(0) of the error ellipse at the endpoint Z,,.
In this example, the error band’ s width at the middle
point of the line segment increased by about 104%
compared with that at the endpoints. Regarding the
other line segments in the examples, the error band’ s
width at the middle point increased by at least 87%.
On the contrary, with respect to the line error band
model proposed by Caspary and Scheuring'®', the
width of the error band at the middle point is about
29% smaller than that at the endpoints. The
Brownian bridge error model of the line segment be-
come a convex set because of the introduced
modeling error. The range and width of the Brownian
bridge error band can be used as indices to evaluate

the positional accuracy of the spatial line segment.
4 Conclusions

A Brownian bridge error model of line segments is pro-
posed for modeling the positional errors of spatial line

segments containing both modeling and measuring

errors. The stochastic process of Brownian motion is
used to depict the positional distributions of the
actual geographic features represented by the line
segments. In the Brownian motion, the measuring error
distributions of the endpoints are used as the prior con-
straints, such that the Brownian motion is
constrained and become the Brownian bridge model.
A propagation method of modeling-measuring inte-
grated error is proposed by using the Brownian
bridge. Finally, the analytical expression of the
Brownian bridge error boundary is established.

Two cases of numerical experiments were con-
ducted to verify the proposed error modeling method.
Several conclusions can be drawn. (D The proposed
error band is obtained to be a convex set. Compared
with the error band proposed by Caspary and Scheur-
ing'® which is dumbbell-shaped, the proposed error
band is spindle-shaped, which is wider in the middle
part of the line segment than at the endpoints. The
shape of the proposed error band indicates that the
position errors in the middle part of the line segment
are larger than that at the two endpoints. This error
distribution conclusion is consistent with the regula-
tions in surveying and mapping, which is the more
distant from the known and observed point, the larger
the error is. @ The shape of the proposed method is
related the endpoints’ variance and the length of the
line segment. And a proximate method for estimating
the modeling error parameter is proposed.

In summary, the proposed Brownian bridge error
model is characterized by taking into account both the
modeling and measuring errors of the line segments. It
provides a solution for the challenge of error modeling
for geographic features that has received a lot of re-
search attention over the past more than 20 years. It
can be used to evaluate line segments’ overall accu-
racy and quality trustability. Nevertheless, the error
boundary of this model is established with the as-
sumption that the error distributions of the endpoints
are independent. In the future study, the correlation
between the endpoints of line segments will be

further considered.
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